KVM: arm64: Make vCPU feature flags consistent VM-wide
[linux-2.6-microblaze.git] / arch / arm64 / include / asm / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30
31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
32
33 #define KVM_HALT_POLL_NS_DEFAULT 500000
34
35 #include <kvm/arm_vgic.h>
36 #include <kvm/arm_arch_timer.h>
37 #include <kvm/arm_pmu.h>
38
39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40
41 #define KVM_VCPU_MAX_FEATURES 7
42 #define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1)
43
44 #define KVM_REQ_SLEEP \
45         KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
46 #define KVM_REQ_IRQ_PENDING     KVM_ARCH_REQ(1)
47 #define KVM_REQ_VCPU_RESET      KVM_ARCH_REQ(2)
48 #define KVM_REQ_RECORD_STEAL    KVM_ARCH_REQ(3)
49 #define KVM_REQ_RELOAD_GICv4    KVM_ARCH_REQ(4)
50 #define KVM_REQ_RELOAD_PMU      KVM_ARCH_REQ(5)
51 #define KVM_REQ_SUSPEND         KVM_ARCH_REQ(6)
52
53 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
54                                      KVM_DIRTY_LOG_INITIALLY_SET)
55
56 #define KVM_HAVE_MMU_RWLOCK
57
58 /*
59  * Mode of operation configurable with kvm-arm.mode early param.
60  * See Documentation/admin-guide/kernel-parameters.txt for more information.
61  */
62 enum kvm_mode {
63         KVM_MODE_DEFAULT,
64         KVM_MODE_PROTECTED,
65         KVM_MODE_NV,
66         KVM_MODE_NONE,
67 };
68 #ifdef CONFIG_KVM
69 enum kvm_mode kvm_get_mode(void);
70 #else
71 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
72 #endif
73
74 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
75
76 extern unsigned int __ro_after_init kvm_sve_max_vl;
77 int __init kvm_arm_init_sve(void);
78
79 u32 __attribute_const__ kvm_target_cpu(void);
80 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
81 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
82
83 struct kvm_hyp_memcache {
84         phys_addr_t head;
85         unsigned long nr_pages;
86 };
87
88 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
89                                      phys_addr_t *p,
90                                      phys_addr_t (*to_pa)(void *virt))
91 {
92         *p = mc->head;
93         mc->head = to_pa(p);
94         mc->nr_pages++;
95 }
96
97 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
98                                      void *(*to_va)(phys_addr_t phys))
99 {
100         phys_addr_t *p = to_va(mc->head);
101
102         if (!mc->nr_pages)
103                 return NULL;
104
105         mc->head = *p;
106         mc->nr_pages--;
107
108         return p;
109 }
110
111 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
112                                        unsigned long min_pages,
113                                        void *(*alloc_fn)(void *arg),
114                                        phys_addr_t (*to_pa)(void *virt),
115                                        void *arg)
116 {
117         while (mc->nr_pages < min_pages) {
118                 phys_addr_t *p = alloc_fn(arg);
119
120                 if (!p)
121                         return -ENOMEM;
122                 push_hyp_memcache(mc, p, to_pa);
123         }
124
125         return 0;
126 }
127
128 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
129                                        void (*free_fn)(void *virt, void *arg),
130                                        void *(*to_va)(phys_addr_t phys),
131                                        void *arg)
132 {
133         while (mc->nr_pages)
134                 free_fn(pop_hyp_memcache(mc, to_va), arg);
135 }
136
137 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
138 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
139
140 struct kvm_vmid {
141         atomic64_t id;
142 };
143
144 struct kvm_s2_mmu {
145         struct kvm_vmid vmid;
146
147         /*
148          * stage2 entry level table
149          *
150          * Two kvm_s2_mmu structures in the same VM can point to the same
151          * pgd here.  This happens when running a guest using a
152          * translation regime that isn't affected by its own stage-2
153          * translation, such as a non-VHE hypervisor running at vEL2, or
154          * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
155          * canonical stage-2 page tables.
156          */
157         phys_addr_t     pgd_phys;
158         struct kvm_pgtable *pgt;
159
160         /* The last vcpu id that ran on each physical CPU */
161         int __percpu *last_vcpu_ran;
162
163         struct kvm_arch *arch;
164 };
165
166 struct kvm_arch_memory_slot {
167 };
168
169 /**
170  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
171  *
172  * @std_bmap: Bitmap of standard secure service calls
173  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
174  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
175  */
176 struct kvm_smccc_features {
177         unsigned long std_bmap;
178         unsigned long std_hyp_bmap;
179         unsigned long vendor_hyp_bmap;
180 };
181
182 typedef unsigned int pkvm_handle_t;
183
184 struct kvm_protected_vm {
185         pkvm_handle_t handle;
186         struct kvm_hyp_memcache teardown_mc;
187 };
188
189 struct kvm_arch {
190         struct kvm_s2_mmu mmu;
191
192         /* VTCR_EL2 value for this VM */
193         u64    vtcr;
194
195         /* Interrupt controller */
196         struct vgic_dist        vgic;
197
198         /* Timers */
199         struct arch_timer_vm_data timer_data;
200
201         /* Mandated version of PSCI */
202         u32 psci_version;
203
204         /* Protects VM-scoped configuration data */
205         struct mutex config_lock;
206
207         /*
208          * If we encounter a data abort without valid instruction syndrome
209          * information, report this to user space.  User space can (and
210          * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
211          * supported.
212          */
213 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER      0
214         /* Memory Tagging Extension enabled for the guest */
215 #define KVM_ARCH_FLAG_MTE_ENABLED                       1
216         /* At least one vCPU has ran in the VM */
217 #define KVM_ARCH_FLAG_HAS_RAN_ONCE                      2
218         /* The vCPU feature set for the VM is configured */
219 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED          3
220         /* PSCI SYSTEM_SUSPEND enabled for the guest */
221 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED            4
222         /* VM counter offset */
223 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET                 5
224         /* Timer PPIs made immutable */
225 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE              6
226         /* SMCCC filter initialized for the VM */
227 #define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED           7
228         unsigned long flags;
229
230         /* VM-wide vCPU feature set */
231         DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
232
233         /*
234          * VM-wide PMU filter, implemented as a bitmap and big enough for
235          * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
236          */
237         unsigned long *pmu_filter;
238         struct arm_pmu *arm_pmu;
239
240         cpumask_var_t supported_cpus;
241
242         u8 pfr0_csv2;
243         u8 pfr0_csv3;
244         struct {
245                 u8 imp:4;
246                 u8 unimp:4;
247         } dfr0_pmuver;
248
249         /* Hypercall features firmware registers' descriptor */
250         struct kvm_smccc_features smccc_feat;
251         struct maple_tree smccc_filter;
252
253         /*
254          * For an untrusted host VM, 'pkvm.handle' is used to lookup
255          * the associated pKVM instance in the hypervisor.
256          */
257         struct kvm_protected_vm pkvm;
258 };
259
260 struct kvm_vcpu_fault_info {
261         u64 esr_el2;            /* Hyp Syndrom Register */
262         u64 far_el2;            /* Hyp Fault Address Register */
263         u64 hpfar_el2;          /* Hyp IPA Fault Address Register */
264         u64 disr_el1;           /* Deferred [SError] Status Register */
265 };
266
267 enum vcpu_sysreg {
268         __INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
269         MPIDR_EL1,      /* MultiProcessor Affinity Register */
270         CLIDR_EL1,      /* Cache Level ID Register */
271         CSSELR_EL1,     /* Cache Size Selection Register */
272         SCTLR_EL1,      /* System Control Register */
273         ACTLR_EL1,      /* Auxiliary Control Register */
274         CPACR_EL1,      /* Coprocessor Access Control */
275         ZCR_EL1,        /* SVE Control */
276         TTBR0_EL1,      /* Translation Table Base Register 0 */
277         TTBR1_EL1,      /* Translation Table Base Register 1 */
278         TCR_EL1,        /* Translation Control Register */
279         ESR_EL1,        /* Exception Syndrome Register */
280         AFSR0_EL1,      /* Auxiliary Fault Status Register 0 */
281         AFSR1_EL1,      /* Auxiliary Fault Status Register 1 */
282         FAR_EL1,        /* Fault Address Register */
283         MAIR_EL1,       /* Memory Attribute Indirection Register */
284         VBAR_EL1,       /* Vector Base Address Register */
285         CONTEXTIDR_EL1, /* Context ID Register */
286         TPIDR_EL0,      /* Thread ID, User R/W */
287         TPIDRRO_EL0,    /* Thread ID, User R/O */
288         TPIDR_EL1,      /* Thread ID, Privileged */
289         AMAIR_EL1,      /* Aux Memory Attribute Indirection Register */
290         CNTKCTL_EL1,    /* Timer Control Register (EL1) */
291         PAR_EL1,        /* Physical Address Register */
292         MDSCR_EL1,      /* Monitor Debug System Control Register */
293         MDCCINT_EL1,    /* Monitor Debug Comms Channel Interrupt Enable Reg */
294         OSLSR_EL1,      /* OS Lock Status Register */
295         DISR_EL1,       /* Deferred Interrupt Status Register */
296
297         /* Performance Monitors Registers */
298         PMCR_EL0,       /* Control Register */
299         PMSELR_EL0,     /* Event Counter Selection Register */
300         PMEVCNTR0_EL0,  /* Event Counter Register (0-30) */
301         PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
302         PMCCNTR_EL0,    /* Cycle Counter Register */
303         PMEVTYPER0_EL0, /* Event Type Register (0-30) */
304         PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
305         PMCCFILTR_EL0,  /* Cycle Count Filter Register */
306         PMCNTENSET_EL0, /* Count Enable Set Register */
307         PMINTENSET_EL1, /* Interrupt Enable Set Register */
308         PMOVSSET_EL0,   /* Overflow Flag Status Set Register */
309         PMUSERENR_EL0,  /* User Enable Register */
310
311         /* Pointer Authentication Registers in a strict increasing order. */
312         APIAKEYLO_EL1,
313         APIAKEYHI_EL1,
314         APIBKEYLO_EL1,
315         APIBKEYHI_EL1,
316         APDAKEYLO_EL1,
317         APDAKEYHI_EL1,
318         APDBKEYLO_EL1,
319         APDBKEYHI_EL1,
320         APGAKEYLO_EL1,
321         APGAKEYHI_EL1,
322
323         ELR_EL1,
324         SP_EL1,
325         SPSR_EL1,
326
327         CNTVOFF_EL2,
328         CNTV_CVAL_EL0,
329         CNTV_CTL_EL0,
330         CNTP_CVAL_EL0,
331         CNTP_CTL_EL0,
332
333         /* Memory Tagging Extension registers */
334         RGSR_EL1,       /* Random Allocation Tag Seed Register */
335         GCR_EL1,        /* Tag Control Register */
336         TFSR_EL1,       /* Tag Fault Status Register (EL1) */
337         TFSRE0_EL1,     /* Tag Fault Status Register (EL0) */
338
339         /* 32bit specific registers. */
340         DACR32_EL2,     /* Domain Access Control Register */
341         IFSR32_EL2,     /* Instruction Fault Status Register */
342         FPEXC32_EL2,    /* Floating-Point Exception Control Register */
343         DBGVCR32_EL2,   /* Debug Vector Catch Register */
344
345         /* EL2 registers */
346         VPIDR_EL2,      /* Virtualization Processor ID Register */
347         VMPIDR_EL2,     /* Virtualization Multiprocessor ID Register */
348         SCTLR_EL2,      /* System Control Register (EL2) */
349         ACTLR_EL2,      /* Auxiliary Control Register (EL2) */
350         HCR_EL2,        /* Hypervisor Configuration Register */
351         MDCR_EL2,       /* Monitor Debug Configuration Register (EL2) */
352         CPTR_EL2,       /* Architectural Feature Trap Register (EL2) */
353         HSTR_EL2,       /* Hypervisor System Trap Register */
354         HACR_EL2,       /* Hypervisor Auxiliary Control Register */
355         TTBR0_EL2,      /* Translation Table Base Register 0 (EL2) */
356         TTBR1_EL2,      /* Translation Table Base Register 1 (EL2) */
357         TCR_EL2,        /* Translation Control Register (EL2) */
358         VTTBR_EL2,      /* Virtualization Translation Table Base Register */
359         VTCR_EL2,       /* Virtualization Translation Control Register */
360         SPSR_EL2,       /* EL2 saved program status register */
361         ELR_EL2,        /* EL2 exception link register */
362         AFSR0_EL2,      /* Auxiliary Fault Status Register 0 (EL2) */
363         AFSR1_EL2,      /* Auxiliary Fault Status Register 1 (EL2) */
364         ESR_EL2,        /* Exception Syndrome Register (EL2) */
365         FAR_EL2,        /* Fault Address Register (EL2) */
366         HPFAR_EL2,      /* Hypervisor IPA Fault Address Register */
367         MAIR_EL2,       /* Memory Attribute Indirection Register (EL2) */
368         AMAIR_EL2,      /* Auxiliary Memory Attribute Indirection Register (EL2) */
369         VBAR_EL2,       /* Vector Base Address Register (EL2) */
370         RVBAR_EL2,      /* Reset Vector Base Address Register */
371         CONTEXTIDR_EL2, /* Context ID Register (EL2) */
372         TPIDR_EL2,      /* EL2 Software Thread ID Register */
373         CNTHCTL_EL2,    /* Counter-timer Hypervisor Control register */
374         SP_EL2,         /* EL2 Stack Pointer */
375         CNTHP_CTL_EL2,
376         CNTHP_CVAL_EL2,
377         CNTHV_CTL_EL2,
378         CNTHV_CVAL_EL2,
379
380         NR_SYS_REGS     /* Nothing after this line! */
381 };
382
383 struct kvm_cpu_context {
384         struct user_pt_regs regs;       /* sp = sp_el0 */
385
386         u64     spsr_abt;
387         u64     spsr_und;
388         u64     spsr_irq;
389         u64     spsr_fiq;
390
391         struct user_fpsimd_state fp_regs;
392
393         u64 sys_regs[NR_SYS_REGS];
394
395         struct kvm_vcpu *__hyp_running_vcpu;
396 };
397
398 struct kvm_host_data {
399         struct kvm_cpu_context host_ctxt;
400 };
401
402 struct kvm_host_psci_config {
403         /* PSCI version used by host. */
404         u32 version;
405
406         /* Function IDs used by host if version is v0.1. */
407         struct psci_0_1_function_ids function_ids_0_1;
408
409         bool psci_0_1_cpu_suspend_implemented;
410         bool psci_0_1_cpu_on_implemented;
411         bool psci_0_1_cpu_off_implemented;
412         bool psci_0_1_migrate_implemented;
413 };
414
415 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
416 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
417
418 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
419 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
420
421 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
422 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
423
424 struct vcpu_reset_state {
425         unsigned long   pc;
426         unsigned long   r0;
427         bool            be;
428         bool            reset;
429 };
430
431 struct kvm_vcpu_arch {
432         struct kvm_cpu_context ctxt;
433
434         /*
435          * Guest floating point state
436          *
437          * The architecture has two main floating point extensions,
438          * the original FPSIMD and SVE.  These have overlapping
439          * register views, with the FPSIMD V registers occupying the
440          * low 128 bits of the SVE Z registers.  When the core
441          * floating point code saves the register state of a task it
442          * records which view it saved in fp_type.
443          */
444         void *sve_state;
445         enum fp_type fp_type;
446         unsigned int sve_max_vl;
447         u64 svcr;
448
449         /* Stage 2 paging state used by the hardware on next switch */
450         struct kvm_s2_mmu *hw_mmu;
451
452         /* Values of trap registers for the guest. */
453         u64 hcr_el2;
454         u64 mdcr_el2;
455         u64 cptr_el2;
456
457         /* Values of trap registers for the host before guest entry. */
458         u64 mdcr_el2_host;
459
460         /* Exception Information */
461         struct kvm_vcpu_fault_info fault;
462
463         /* Ownership of the FP regs */
464         enum {
465                 FP_STATE_FREE,
466                 FP_STATE_HOST_OWNED,
467                 FP_STATE_GUEST_OWNED,
468         } fp_state;
469
470         /* Configuration flags, set once and for all before the vcpu can run */
471         u8 cflags;
472
473         /* Input flags to the hypervisor code, potentially cleared after use */
474         u8 iflags;
475
476         /* State flags for kernel bookkeeping, unused by the hypervisor code */
477         u8 sflags;
478
479         /*
480          * Don't run the guest (internal implementation need).
481          *
482          * Contrary to the flags above, this is set/cleared outside of
483          * a vcpu context, and thus cannot be mixed with the flags
484          * themselves (or the flag accesses need to be made atomic).
485          */
486         bool pause;
487
488         /*
489          * We maintain more than a single set of debug registers to support
490          * debugging the guest from the host and to maintain separate host and
491          * guest state during world switches. vcpu_debug_state are the debug
492          * registers of the vcpu as the guest sees them.  host_debug_state are
493          * the host registers which are saved and restored during
494          * world switches. external_debug_state contains the debug
495          * values we want to debug the guest. This is set via the
496          * KVM_SET_GUEST_DEBUG ioctl.
497          *
498          * debug_ptr points to the set of debug registers that should be loaded
499          * onto the hardware when running the guest.
500          */
501         struct kvm_guest_debug_arch *debug_ptr;
502         struct kvm_guest_debug_arch vcpu_debug_state;
503         struct kvm_guest_debug_arch external_debug_state;
504
505         struct user_fpsimd_state *host_fpsimd_state;    /* hyp VA */
506         struct task_struct *parent_task;
507
508         struct {
509                 /* {Break,watch}point registers */
510                 struct kvm_guest_debug_arch regs;
511                 /* Statistical profiling extension */
512                 u64 pmscr_el1;
513                 /* Self-hosted trace */
514                 u64 trfcr_el1;
515         } host_debug_state;
516
517         /* VGIC state */
518         struct vgic_cpu vgic_cpu;
519         struct arch_timer_cpu timer_cpu;
520         struct kvm_pmu pmu;
521
522         /*
523          * Guest registers we preserve during guest debugging.
524          *
525          * These shadow registers are updated by the kvm_handle_sys_reg
526          * trap handler if the guest accesses or updates them while we
527          * are using guest debug.
528          */
529         struct {
530                 u32     mdscr_el1;
531                 bool    pstate_ss;
532         } guest_debug_preserved;
533
534         /* vcpu power state */
535         struct kvm_mp_state mp_state;
536         spinlock_t mp_state_lock;
537
538         /* Cache some mmu pages needed inside spinlock regions */
539         struct kvm_mmu_memory_cache mmu_page_cache;
540
541         /* Target CPU and feature flags */
542         int target;
543         DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
544
545         /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
546         u64 vsesr_el2;
547
548         /* Additional reset state */
549         struct vcpu_reset_state reset_state;
550
551         /* Guest PV state */
552         struct {
553                 u64 last_steal;
554                 gpa_t base;
555         } steal;
556
557         /* Per-vcpu CCSIDR override or NULL */
558         u32 *ccsidr;
559 };
560
561 /*
562  * Each 'flag' is composed of a comma-separated triplet:
563  *
564  * - the flag-set it belongs to in the vcpu->arch structure
565  * - the value for that flag
566  * - the mask for that flag
567  *
568  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
569  * unpack_vcpu_flag() extract the flag value from the triplet for
570  * direct use outside of the flag accessors.
571  */
572 #define __vcpu_single_flag(_set, _f)    _set, (_f), (_f)
573
574 #define __unpack_flag(_set, _f, _m)     _f
575 #define unpack_vcpu_flag(...)           __unpack_flag(__VA_ARGS__)
576
577 #define __build_check_flag(v, flagset, f, m)                    \
578         do {                                                    \
579                 typeof(v->arch.flagset) *_fset;                 \
580                                                                 \
581                 /* Check that the flags fit in the mask */      \
582                 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
583                 /* Check that the flags fit in the type */      \
584                 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
585         } while (0)
586
587 #define __vcpu_get_flag(v, flagset, f, m)                       \
588         ({                                                      \
589                 __build_check_flag(v, flagset, f, m);           \
590                                                                 \
591                 READ_ONCE(v->arch.flagset) & (m);               \
592         })
593
594 /*
595  * Note that the set/clear accessors must be preempt-safe in order to
596  * avoid nesting them with load/put which also manipulate flags...
597  */
598 #ifdef __KVM_NVHE_HYPERVISOR__
599 /* the nVHE hypervisor is always non-preemptible */
600 #define __vcpu_flags_preempt_disable()
601 #define __vcpu_flags_preempt_enable()
602 #else
603 #define __vcpu_flags_preempt_disable()  preempt_disable()
604 #define __vcpu_flags_preempt_enable()   preempt_enable()
605 #endif
606
607 #define __vcpu_set_flag(v, flagset, f, m)                       \
608         do {                                                    \
609                 typeof(v->arch.flagset) *fset;                  \
610                                                                 \
611                 __build_check_flag(v, flagset, f, m);           \
612                                                                 \
613                 fset = &v->arch.flagset;                        \
614                 __vcpu_flags_preempt_disable();                 \
615                 if (HWEIGHT(m) > 1)                             \
616                         *fset &= ~(m);                          \
617                 *fset |= (f);                                   \
618                 __vcpu_flags_preempt_enable();                  \
619         } while (0)
620
621 #define __vcpu_clear_flag(v, flagset, f, m)                     \
622         do {                                                    \
623                 typeof(v->arch.flagset) *fset;                  \
624                                                                 \
625                 __build_check_flag(v, flagset, f, m);           \
626                                                                 \
627                 fset = &v->arch.flagset;                        \
628                 __vcpu_flags_preempt_disable();                 \
629                 *fset &= ~(m);                                  \
630                 __vcpu_flags_preempt_enable();                  \
631         } while (0)
632
633 #define vcpu_get_flag(v, ...)   __vcpu_get_flag((v), __VA_ARGS__)
634 #define vcpu_set_flag(v, ...)   __vcpu_set_flag((v), __VA_ARGS__)
635 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
636
637 /* SVE exposed to guest */
638 #define GUEST_HAS_SVE           __vcpu_single_flag(cflags, BIT(0))
639 /* SVE config completed */
640 #define VCPU_SVE_FINALIZED      __vcpu_single_flag(cflags, BIT(1))
641 /* PTRAUTH exposed to guest */
642 #define GUEST_HAS_PTRAUTH       __vcpu_single_flag(cflags, BIT(2))
643
644 /* Exception pending */
645 #define PENDING_EXCEPTION       __vcpu_single_flag(iflags, BIT(0))
646 /*
647  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
648  * be set together with an exception...
649  */
650 #define INCREMENT_PC            __vcpu_single_flag(iflags, BIT(1))
651 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
652 #define EXCEPT_MASK             __vcpu_single_flag(iflags, GENMASK(3, 1))
653
654 /* Helpers to encode exceptions with minimum fuss */
655 #define __EXCEPT_MASK_VAL       unpack_vcpu_flag(EXCEPT_MASK)
656 #define __EXCEPT_SHIFT          __builtin_ctzl(__EXCEPT_MASK_VAL)
657 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
658
659 /*
660  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
661  * values:
662  *
663  * For AArch32 EL1:
664  */
665 #define EXCEPT_AA32_UND         __vcpu_except_flags(0)
666 #define EXCEPT_AA32_IABT        __vcpu_except_flags(1)
667 #define EXCEPT_AA32_DABT        __vcpu_except_flags(2)
668 /* For AArch64: */
669 #define EXCEPT_AA64_EL1_SYNC    __vcpu_except_flags(0)
670 #define EXCEPT_AA64_EL1_IRQ     __vcpu_except_flags(1)
671 #define EXCEPT_AA64_EL1_FIQ     __vcpu_except_flags(2)
672 #define EXCEPT_AA64_EL1_SERR    __vcpu_except_flags(3)
673 /* For AArch64 with NV: */
674 #define EXCEPT_AA64_EL2_SYNC    __vcpu_except_flags(4)
675 #define EXCEPT_AA64_EL2_IRQ     __vcpu_except_flags(5)
676 #define EXCEPT_AA64_EL2_FIQ     __vcpu_except_flags(6)
677 #define EXCEPT_AA64_EL2_SERR    __vcpu_except_flags(7)
678 /* Guest debug is live */
679 #define DEBUG_DIRTY             __vcpu_single_flag(iflags, BIT(4))
680 /* Save SPE context if active  */
681 #define DEBUG_STATE_SAVE_SPE    __vcpu_single_flag(iflags, BIT(5))
682 /* Save TRBE context if active  */
683 #define DEBUG_STATE_SAVE_TRBE   __vcpu_single_flag(iflags, BIT(6))
684 /* vcpu running in HYP context */
685 #define VCPU_HYP_CONTEXT        __vcpu_single_flag(iflags, BIT(7))
686
687 /* SVE enabled for host EL0 */
688 #define HOST_SVE_ENABLED        __vcpu_single_flag(sflags, BIT(0))
689 /* SME enabled for EL0 */
690 #define HOST_SME_ENABLED        __vcpu_single_flag(sflags, BIT(1))
691 /* Physical CPU not in supported_cpus */
692 #define ON_UNSUPPORTED_CPU      __vcpu_single_flag(sflags, BIT(2))
693 /* WFIT instruction trapped */
694 #define IN_WFIT                 __vcpu_single_flag(sflags, BIT(3))
695 /* vcpu system registers loaded on physical CPU */
696 #define SYSREGS_ON_CPU          __vcpu_single_flag(sflags, BIT(4))
697 /* Software step state is Active-pending */
698 #define DBG_SS_ACTIVE_PENDING   __vcpu_single_flag(sflags, BIT(5))
699
700
701 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
702 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +      \
703                              sve_ffr_offset((vcpu)->arch.sve_max_vl))
704
705 #define vcpu_sve_max_vq(vcpu)   sve_vq_from_vl((vcpu)->arch.sve_max_vl)
706
707 #define vcpu_sve_state_size(vcpu) ({                                    \
708         size_t __size_ret;                                              \
709         unsigned int __vcpu_vq;                                         \
710                                                                         \
711         if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {          \
712                 __size_ret = 0;                                         \
713         } else {                                                        \
714                 __vcpu_vq = vcpu_sve_max_vq(vcpu);                      \
715                 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);              \
716         }                                                               \
717                                                                         \
718         __size_ret;                                                     \
719 })
720
721 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
722                                  KVM_GUESTDBG_USE_SW_BP | \
723                                  KVM_GUESTDBG_USE_HW | \
724                                  KVM_GUESTDBG_SINGLESTEP)
725
726 #define vcpu_has_sve(vcpu) (system_supports_sve() &&                    \
727                             vcpu_get_flag(vcpu, GUEST_HAS_SVE))
728
729 #ifdef CONFIG_ARM64_PTR_AUTH
730 #define vcpu_has_ptrauth(vcpu)                                          \
731         ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||                \
732           cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&               \
733           vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
734 #else
735 #define vcpu_has_ptrauth(vcpu)          false
736 #endif
737
738 #define vcpu_on_unsupported_cpu(vcpu)                                   \
739         vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
740
741 #define vcpu_set_on_unsupported_cpu(vcpu)                               \
742         vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
743
744 #define vcpu_clear_on_unsupported_cpu(vcpu)                             \
745         vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
746
747 #define vcpu_gp_regs(v)         (&(v)->arch.ctxt.regs)
748
749 /*
750  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
751  * memory backed version of a register, and not the one most recently
752  * accessed by a running VCPU.  For example, for userspace access or
753  * for system registers that are never context switched, but only
754  * emulated.
755  */
756 #define __ctxt_sys_reg(c,r)     (&(c)->sys_regs[(r)])
757
758 #define ctxt_sys_reg(c,r)       (*__ctxt_sys_reg(c,r))
759
760 #define __vcpu_sys_reg(v,r)     (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
761
762 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
763 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
764
765 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
766 {
767         /*
768          * *** VHE ONLY ***
769          *
770          * System registers listed in the switch are not saved on every
771          * exit from the guest but are only saved on vcpu_put.
772          *
773          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
774          * should never be listed below, because the guest cannot modify its
775          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
776          * thread when emulating cross-VCPU communication.
777          */
778         if (!has_vhe())
779                 return false;
780
781         switch (reg) {
782         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
783         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
784         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
785         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
786         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
787         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
788         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
789         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
790         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
791         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
792         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
793         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
794         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
795         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
796         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
797         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
798         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
799         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
800         case PAR_EL1:           *val = read_sysreg_par();               break;
801         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
802         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
803         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
804         default:                return false;
805         }
806
807         return true;
808 }
809
810 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
811 {
812         /*
813          * *** VHE ONLY ***
814          *
815          * System registers listed in the switch are not restored on every
816          * entry to the guest but are only restored on vcpu_load.
817          *
818          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
819          * should never be listed below, because the MPIDR should only be set
820          * once, before running the VCPU, and never changed later.
821          */
822         if (!has_vhe())
823                 return false;
824
825         switch (reg) {
826         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
827         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
828         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
829         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
830         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
831         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
832         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
833         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
834         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
835         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
836         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
837         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
838         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
839         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
840         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
841         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
842         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
843         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
844         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
845         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
846         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
847         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
848         default:                return false;
849         }
850
851         return true;
852 }
853
854 struct kvm_vm_stat {
855         struct kvm_vm_stat_generic generic;
856 };
857
858 struct kvm_vcpu_stat {
859         struct kvm_vcpu_stat_generic generic;
860         u64 hvc_exit_stat;
861         u64 wfe_exit_stat;
862         u64 wfi_exit_stat;
863         u64 mmio_exit_user;
864         u64 mmio_exit_kernel;
865         u64 signal_exits;
866         u64 exits;
867 };
868
869 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
870 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
871 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
872 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
873 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
874
875 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
876 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
877
878 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
879                               struct kvm_vcpu_events *events);
880
881 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
882                               struct kvm_vcpu_events *events);
883
884 #define KVM_ARCH_WANT_MMU_NOTIFIER
885
886 void kvm_arm_halt_guest(struct kvm *kvm);
887 void kvm_arm_resume_guest(struct kvm *kvm);
888
889 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid)
890
891 #ifndef __KVM_NVHE_HYPERVISOR__
892 #define kvm_call_hyp_nvhe(f, ...)                                               \
893         ({                                                              \
894                 struct arm_smccc_res res;                               \
895                                                                         \
896                 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),               \
897                                   ##__VA_ARGS__, &res);                 \
898                 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);                   \
899                                                                         \
900                 res.a1;                                                 \
901         })
902
903 /*
904  * The couple of isb() below are there to guarantee the same behaviour
905  * on VHE as on !VHE, where the eret to EL1 acts as a context
906  * synchronization event.
907  */
908 #define kvm_call_hyp(f, ...)                                            \
909         do {                                                            \
910                 if (has_vhe()) {                                        \
911                         f(__VA_ARGS__);                                 \
912                         isb();                                          \
913                 } else {                                                \
914                         kvm_call_hyp_nvhe(f, ##__VA_ARGS__);            \
915                 }                                                       \
916         } while(0)
917
918 #define kvm_call_hyp_ret(f, ...)                                        \
919         ({                                                              \
920                 typeof(f(__VA_ARGS__)) ret;                             \
921                                                                         \
922                 if (has_vhe()) {                                        \
923                         ret = f(__VA_ARGS__);                           \
924                         isb();                                          \
925                 } else {                                                \
926                         ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);      \
927                 }                                                       \
928                                                                         \
929                 ret;                                                    \
930         })
931 #else /* __KVM_NVHE_HYPERVISOR__ */
932 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
933 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
934 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
935 #endif /* __KVM_NVHE_HYPERVISOR__ */
936
937 void force_vm_exit(const cpumask_t *mask);
938
939 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
940 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
941
942 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
943 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
944 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
945 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
946 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
947 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
948 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
949
950 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
951
952 int __init kvm_sys_reg_table_init(void);
953
954 bool lock_all_vcpus(struct kvm *kvm);
955 void unlock_all_vcpus(struct kvm *kvm);
956
957 /* MMIO helpers */
958 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
959 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
960
961 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
962 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
963
964 /*
965  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
966  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
967  * loaded is considered to be "in guest".
968  */
969 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
970 {
971         return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
972 }
973
974 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
975 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
976 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
977
978 bool kvm_arm_pvtime_supported(void);
979 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
980                             struct kvm_device_attr *attr);
981 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
982                             struct kvm_device_attr *attr);
983 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
984                             struct kvm_device_attr *attr);
985
986 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
987 int __init kvm_arm_vmid_alloc_init(void);
988 void __init kvm_arm_vmid_alloc_free(void);
989 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
990 void kvm_arm_vmid_clear_active(void);
991
992 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
993 {
994         vcpu_arch->steal.base = INVALID_GPA;
995 }
996
997 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
998 {
999         return (vcpu_arch->steal.base != INVALID_GPA);
1000 }
1001
1002 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1003
1004 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1005
1006 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1007
1008 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1009 {
1010         /* The host's MPIDR is immutable, so let's set it up at boot time */
1011         ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1012 }
1013
1014 static inline bool kvm_system_needs_idmapped_vectors(void)
1015 {
1016         return cpus_have_const_cap(ARM64_SPECTRE_V3A);
1017 }
1018
1019 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
1020
1021 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1022 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
1023
1024 void kvm_arm_init_debug(void);
1025 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1026 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1027 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1028 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1029
1030 #define kvm_vcpu_os_lock_enabled(vcpu)          \
1031         (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & SYS_OSLSR_OSLK))
1032
1033 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1034                                struct kvm_device_attr *attr);
1035 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1036                                struct kvm_device_attr *attr);
1037 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1038                                struct kvm_device_attr *attr);
1039
1040 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1041                                struct kvm_arm_copy_mte_tags *copy_tags);
1042 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1043                                     struct kvm_arm_counter_offset *offset);
1044
1045 /* Guest/host FPSIMD coordination helpers */
1046 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1047 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1048 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1049 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1050 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1051 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
1052
1053 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1054 {
1055         return (!has_vhe() && attr->exclude_host);
1056 }
1057
1058 /* Flags for host debug state */
1059 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1060 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1061
1062 #ifdef CONFIG_KVM
1063 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
1064 void kvm_clr_pmu_events(u32 clr);
1065 #else
1066 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
1067 static inline void kvm_clr_pmu_events(u32 clr) {}
1068 #endif
1069
1070 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
1071 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
1072
1073 int __init kvm_set_ipa_limit(void);
1074
1075 #define __KVM_HAVE_ARCH_VM_ALLOC
1076 struct kvm *kvm_arch_alloc_vm(void);
1077
1078 static inline bool kvm_vm_is_protected(struct kvm *kvm)
1079 {
1080         return false;
1081 }
1082
1083 void kvm_init_protected_traps(struct kvm_vcpu *vcpu);
1084
1085 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1086 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1087
1088 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1089
1090 #define kvm_has_mte(kvm)                                        \
1091         (system_supports_mte() &&                               \
1092          test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1093
1094 #define kvm_supports_32bit_el0()                                \
1095         (system_supports_32bit_el0() &&                         \
1096          !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1097
1098 #define kvm_vm_has_ran_once(kvm)                                        \
1099         (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1100
1101 int kvm_trng_call(struct kvm_vcpu *vcpu);
1102 #ifdef CONFIG_KVM
1103 extern phys_addr_t hyp_mem_base;
1104 extern phys_addr_t hyp_mem_size;
1105 void __init kvm_hyp_reserve(void);
1106 #else
1107 static inline void kvm_hyp_reserve(void) { }
1108 #endif
1109
1110 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1111 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1112
1113 #endif /* __ARM64_KVM_HOST_H__ */