Merge branch 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / arm64 / crypto / aes-glue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
4  *
5  * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7
8 #include <asm/neon.h>
9 #include <asm/hwcap.h>
10 #include <asm/simd.h>
11 #include <crypto/aes.h>
12 #include <crypto/ctr.h>
13 #include <crypto/sha.h>
14 #include <crypto/internal/hash.h>
15 #include <crypto/internal/simd.h>
16 #include <crypto/internal/skcipher.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/module.h>
19 #include <linux/cpufeature.h>
20 #include <crypto/xts.h>
21
22 #include "aes-ce-setkey.h"
23
24 #ifdef USE_V8_CRYPTO_EXTENSIONS
25 #define MODE                    "ce"
26 #define PRIO                    300
27 #define aes_expandkey           ce_aes_expandkey
28 #define aes_ecb_encrypt         ce_aes_ecb_encrypt
29 #define aes_ecb_decrypt         ce_aes_ecb_decrypt
30 #define aes_cbc_encrypt         ce_aes_cbc_encrypt
31 #define aes_cbc_decrypt         ce_aes_cbc_decrypt
32 #define aes_cbc_cts_encrypt     ce_aes_cbc_cts_encrypt
33 #define aes_cbc_cts_decrypt     ce_aes_cbc_cts_decrypt
34 #define aes_essiv_cbc_encrypt   ce_aes_essiv_cbc_encrypt
35 #define aes_essiv_cbc_decrypt   ce_aes_essiv_cbc_decrypt
36 #define aes_ctr_encrypt         ce_aes_ctr_encrypt
37 #define aes_xts_encrypt         ce_aes_xts_encrypt
38 #define aes_xts_decrypt         ce_aes_xts_decrypt
39 #define aes_mac_update          ce_aes_mac_update
40 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
41 #else
42 #define MODE                    "neon"
43 #define PRIO                    200
44 #define aes_ecb_encrypt         neon_aes_ecb_encrypt
45 #define aes_ecb_decrypt         neon_aes_ecb_decrypt
46 #define aes_cbc_encrypt         neon_aes_cbc_encrypt
47 #define aes_cbc_decrypt         neon_aes_cbc_decrypt
48 #define aes_cbc_cts_encrypt     neon_aes_cbc_cts_encrypt
49 #define aes_cbc_cts_decrypt     neon_aes_cbc_cts_decrypt
50 #define aes_essiv_cbc_encrypt   neon_aes_essiv_cbc_encrypt
51 #define aes_essiv_cbc_decrypt   neon_aes_essiv_cbc_decrypt
52 #define aes_ctr_encrypt         neon_aes_ctr_encrypt
53 #define aes_xts_encrypt         neon_aes_xts_encrypt
54 #define aes_xts_decrypt         neon_aes_xts_decrypt
55 #define aes_mac_update          neon_aes_mac_update
56 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
57 #endif
58 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !defined(CONFIG_CRYPTO_AES_ARM64_BS)
59 MODULE_ALIAS_CRYPTO("ecb(aes)");
60 MODULE_ALIAS_CRYPTO("cbc(aes)");
61 MODULE_ALIAS_CRYPTO("ctr(aes)");
62 MODULE_ALIAS_CRYPTO("xts(aes)");
63 #endif
64 MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
65 MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)");
66 MODULE_ALIAS_CRYPTO("cmac(aes)");
67 MODULE_ALIAS_CRYPTO("xcbc(aes)");
68 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
69
70 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
71 MODULE_LICENSE("GPL v2");
72
73 /* defined in aes-modes.S */
74 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
75                                 int rounds, int blocks);
76 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
77                                 int rounds, int blocks);
78
79 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
80                                 int rounds, int blocks, u8 iv[]);
81 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
82                                 int rounds, int blocks, u8 iv[]);
83
84 asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
85                                 int rounds, int bytes, u8 const iv[]);
86 asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
87                                 int rounds, int bytes, u8 const iv[]);
88
89 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
90                                 int rounds, int blocks, u8 ctr[]);
91
92 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
93                                 int rounds, int bytes, u32 const rk2[], u8 iv[],
94                                 int first);
95 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
96                                 int rounds, int bytes, u32 const rk2[], u8 iv[],
97                                 int first);
98
99 asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[],
100                                       int rounds, int blocks, u8 iv[],
101                                       u32 const rk2[]);
102 asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[],
103                                       int rounds, int blocks, u8 iv[],
104                                       u32 const rk2[]);
105
106 asmlinkage void aes_mac_update(u8 const in[], u32 const rk[], int rounds,
107                                int blocks, u8 dg[], int enc_before,
108                                int enc_after);
109
110 struct crypto_aes_xts_ctx {
111         struct crypto_aes_ctx key1;
112         struct crypto_aes_ctx __aligned(8) key2;
113 };
114
115 struct crypto_aes_essiv_cbc_ctx {
116         struct crypto_aes_ctx key1;
117         struct crypto_aes_ctx __aligned(8) key2;
118         struct crypto_shash *hash;
119 };
120
121 struct mac_tfm_ctx {
122         struct crypto_aes_ctx key;
123         u8 __aligned(8) consts[];
124 };
125
126 struct mac_desc_ctx {
127         unsigned int len;
128         u8 dg[AES_BLOCK_SIZE];
129 };
130
131 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
132                                unsigned int key_len)
133 {
134         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
135         int ret;
136
137         ret = aes_expandkey(ctx, in_key, key_len);
138         if (ret)
139                 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
140
141         return ret;
142 }
143
144 static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm,
145                                       const u8 *in_key, unsigned int key_len)
146 {
147         struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
148         int ret;
149
150         ret = xts_verify_key(tfm, in_key, key_len);
151         if (ret)
152                 return ret;
153
154         ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
155         if (!ret)
156                 ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
157                                     key_len / 2);
158         if (!ret)
159                 return 0;
160
161         crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
162         return -EINVAL;
163 }
164
165 static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm,
166                                             const u8 *in_key,
167                                             unsigned int key_len)
168 {
169         struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
170         SHASH_DESC_ON_STACK(desc, ctx->hash);
171         u8 digest[SHA256_DIGEST_SIZE];
172         int ret;
173
174         ret = aes_expandkey(&ctx->key1, in_key, key_len);
175         if (ret)
176                 goto out;
177
178         desc->tfm = ctx->hash;
179         crypto_shash_digest(desc, in_key, key_len, digest);
180
181         ret = aes_expandkey(&ctx->key2, digest, sizeof(digest));
182         if (ret)
183                 goto out;
184
185         return 0;
186 out:
187         crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
188         return -EINVAL;
189 }
190
191 static int __maybe_unused ecb_encrypt(struct skcipher_request *req)
192 {
193         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
194         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
195         int err, rounds = 6 + ctx->key_length / 4;
196         struct skcipher_walk walk;
197         unsigned int blocks;
198
199         err = skcipher_walk_virt(&walk, req, false);
200
201         while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
202                 kernel_neon_begin();
203                 aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
204                                 ctx->key_enc, rounds, blocks);
205                 kernel_neon_end();
206                 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
207         }
208         return err;
209 }
210
211 static int __maybe_unused ecb_decrypt(struct skcipher_request *req)
212 {
213         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
214         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
215         int err, rounds = 6 + ctx->key_length / 4;
216         struct skcipher_walk walk;
217         unsigned int blocks;
218
219         err = skcipher_walk_virt(&walk, req, false);
220
221         while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
222                 kernel_neon_begin();
223                 aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
224                                 ctx->key_dec, rounds, blocks);
225                 kernel_neon_end();
226                 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
227         }
228         return err;
229 }
230
231 static int cbc_encrypt_walk(struct skcipher_request *req,
232                             struct skcipher_walk *walk)
233 {
234         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
235         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
236         int err = 0, rounds = 6 + ctx->key_length / 4;
237         unsigned int blocks;
238
239         while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
240                 kernel_neon_begin();
241                 aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
242                                 ctx->key_enc, rounds, blocks, walk->iv);
243                 kernel_neon_end();
244                 err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
245         }
246         return err;
247 }
248
249 static int __maybe_unused cbc_encrypt(struct skcipher_request *req)
250 {
251         struct skcipher_walk walk;
252         int err;
253
254         err = skcipher_walk_virt(&walk, req, false);
255         if (err)
256                 return err;
257         return cbc_encrypt_walk(req, &walk);
258 }
259
260 static int cbc_decrypt_walk(struct skcipher_request *req,
261                             struct skcipher_walk *walk)
262 {
263         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
264         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
265         int err = 0, rounds = 6 + ctx->key_length / 4;
266         unsigned int blocks;
267
268         while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
269                 kernel_neon_begin();
270                 aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
271                                 ctx->key_dec, rounds, blocks, walk->iv);
272                 kernel_neon_end();
273                 err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
274         }
275         return err;
276 }
277
278 static int __maybe_unused cbc_decrypt(struct skcipher_request *req)
279 {
280         struct skcipher_walk walk;
281         int err;
282
283         err = skcipher_walk_virt(&walk, req, false);
284         if (err)
285                 return err;
286         return cbc_decrypt_walk(req, &walk);
287 }
288
289 static int cts_cbc_encrypt(struct skcipher_request *req)
290 {
291         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
292         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
293         int err, rounds = 6 + ctx->key_length / 4;
294         int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
295         struct scatterlist *src = req->src, *dst = req->dst;
296         struct scatterlist sg_src[2], sg_dst[2];
297         struct skcipher_request subreq;
298         struct skcipher_walk walk;
299
300         skcipher_request_set_tfm(&subreq, tfm);
301         skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
302                                       NULL, NULL);
303
304         if (req->cryptlen <= AES_BLOCK_SIZE) {
305                 if (req->cryptlen < AES_BLOCK_SIZE)
306                         return -EINVAL;
307                 cbc_blocks = 1;
308         }
309
310         if (cbc_blocks > 0) {
311                 skcipher_request_set_crypt(&subreq, req->src, req->dst,
312                                            cbc_blocks * AES_BLOCK_SIZE,
313                                            req->iv);
314
315                 err = skcipher_walk_virt(&walk, &subreq, false) ?:
316                       cbc_encrypt_walk(&subreq, &walk);
317                 if (err)
318                         return err;
319
320                 if (req->cryptlen == AES_BLOCK_SIZE)
321                         return 0;
322
323                 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
324                 if (req->dst != req->src)
325                         dst = scatterwalk_ffwd(sg_dst, req->dst,
326                                                subreq.cryptlen);
327         }
328
329         /* handle ciphertext stealing */
330         skcipher_request_set_crypt(&subreq, src, dst,
331                                    req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
332                                    req->iv);
333
334         err = skcipher_walk_virt(&walk, &subreq, false);
335         if (err)
336                 return err;
337
338         kernel_neon_begin();
339         aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
340                             ctx->key_enc, rounds, walk.nbytes, walk.iv);
341         kernel_neon_end();
342
343         return skcipher_walk_done(&walk, 0);
344 }
345
346 static int cts_cbc_decrypt(struct skcipher_request *req)
347 {
348         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
349         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
350         int err, rounds = 6 + ctx->key_length / 4;
351         int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
352         struct scatterlist *src = req->src, *dst = req->dst;
353         struct scatterlist sg_src[2], sg_dst[2];
354         struct skcipher_request subreq;
355         struct skcipher_walk walk;
356
357         skcipher_request_set_tfm(&subreq, tfm);
358         skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
359                                       NULL, NULL);
360
361         if (req->cryptlen <= AES_BLOCK_SIZE) {
362                 if (req->cryptlen < AES_BLOCK_SIZE)
363                         return -EINVAL;
364                 cbc_blocks = 1;
365         }
366
367         if (cbc_blocks > 0) {
368                 skcipher_request_set_crypt(&subreq, req->src, req->dst,
369                                            cbc_blocks * AES_BLOCK_SIZE,
370                                            req->iv);
371
372                 err = skcipher_walk_virt(&walk, &subreq, false) ?:
373                       cbc_decrypt_walk(&subreq, &walk);
374                 if (err)
375                         return err;
376
377                 if (req->cryptlen == AES_BLOCK_SIZE)
378                         return 0;
379
380                 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
381                 if (req->dst != req->src)
382                         dst = scatterwalk_ffwd(sg_dst, req->dst,
383                                                subreq.cryptlen);
384         }
385
386         /* handle ciphertext stealing */
387         skcipher_request_set_crypt(&subreq, src, dst,
388                                    req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
389                                    req->iv);
390
391         err = skcipher_walk_virt(&walk, &subreq, false);
392         if (err)
393                 return err;
394
395         kernel_neon_begin();
396         aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
397                             ctx->key_dec, rounds, walk.nbytes, walk.iv);
398         kernel_neon_end();
399
400         return skcipher_walk_done(&walk, 0);
401 }
402
403 static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm)
404 {
405         struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
406
407         ctx->hash = crypto_alloc_shash("sha256", 0, 0);
408
409         return PTR_ERR_OR_ZERO(ctx->hash);
410 }
411
412 static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm)
413 {
414         struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
415
416         crypto_free_shash(ctx->hash);
417 }
418
419 static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req)
420 {
421         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
422         struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
423         int err, rounds = 6 + ctx->key1.key_length / 4;
424         struct skcipher_walk walk;
425         unsigned int blocks;
426
427         err = skcipher_walk_virt(&walk, req, false);
428
429         blocks = walk.nbytes / AES_BLOCK_SIZE;
430         if (blocks) {
431                 kernel_neon_begin();
432                 aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
433                                       ctx->key1.key_enc, rounds, blocks,
434                                       req->iv, ctx->key2.key_enc);
435                 kernel_neon_end();
436                 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
437         }
438         return err ?: cbc_encrypt_walk(req, &walk);
439 }
440
441 static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req)
442 {
443         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
444         struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
445         int err, rounds = 6 + ctx->key1.key_length / 4;
446         struct skcipher_walk walk;
447         unsigned int blocks;
448
449         err = skcipher_walk_virt(&walk, req, false);
450
451         blocks = walk.nbytes / AES_BLOCK_SIZE;
452         if (blocks) {
453                 kernel_neon_begin();
454                 aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
455                                       ctx->key1.key_dec, rounds, blocks,
456                                       req->iv, ctx->key2.key_enc);
457                 kernel_neon_end();
458                 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
459         }
460         return err ?: cbc_decrypt_walk(req, &walk);
461 }
462
463 static int ctr_encrypt(struct skcipher_request *req)
464 {
465         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
466         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
467         int err, rounds = 6 + ctx->key_length / 4;
468         struct skcipher_walk walk;
469         int blocks;
470
471         err = skcipher_walk_virt(&walk, req, false);
472
473         while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
474                 kernel_neon_begin();
475                 aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
476                                 ctx->key_enc, rounds, blocks, walk.iv);
477                 kernel_neon_end();
478                 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
479         }
480         if (walk.nbytes) {
481                 u8 __aligned(8) tail[AES_BLOCK_SIZE];
482                 unsigned int nbytes = walk.nbytes;
483                 u8 *tdst = walk.dst.virt.addr;
484                 u8 *tsrc = walk.src.virt.addr;
485
486                 /*
487                  * Tell aes_ctr_encrypt() to process a tail block.
488                  */
489                 blocks = -1;
490
491                 kernel_neon_begin();
492                 aes_ctr_encrypt(tail, NULL, ctx->key_enc, rounds,
493                                 blocks, walk.iv);
494                 kernel_neon_end();
495                 crypto_xor_cpy(tdst, tsrc, tail, nbytes);
496                 err = skcipher_walk_done(&walk, 0);
497         }
498
499         return err;
500 }
501
502 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
503 {
504         const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
505         unsigned long flags;
506
507         /*
508          * Temporarily disable interrupts to avoid races where
509          * cachelines are evicted when the CPU is interrupted
510          * to do something else.
511          */
512         local_irq_save(flags);
513         aes_encrypt(ctx, dst, src);
514         local_irq_restore(flags);
515 }
516
517 static int __maybe_unused ctr_encrypt_sync(struct skcipher_request *req)
518 {
519         if (!crypto_simd_usable())
520                 return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
521
522         return ctr_encrypt(req);
523 }
524
525 static int __maybe_unused xts_encrypt(struct skcipher_request *req)
526 {
527         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
528         struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
529         int err, first, rounds = 6 + ctx->key1.key_length / 4;
530         int tail = req->cryptlen % AES_BLOCK_SIZE;
531         struct scatterlist sg_src[2], sg_dst[2];
532         struct skcipher_request subreq;
533         struct scatterlist *src, *dst;
534         struct skcipher_walk walk;
535
536         if (req->cryptlen < AES_BLOCK_SIZE)
537                 return -EINVAL;
538
539         err = skcipher_walk_virt(&walk, req, false);
540
541         if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
542                 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
543                                               AES_BLOCK_SIZE) - 2;
544
545                 skcipher_walk_abort(&walk);
546
547                 skcipher_request_set_tfm(&subreq, tfm);
548                 skcipher_request_set_callback(&subreq,
549                                               skcipher_request_flags(req),
550                                               NULL, NULL);
551                 skcipher_request_set_crypt(&subreq, req->src, req->dst,
552                                            xts_blocks * AES_BLOCK_SIZE,
553                                            req->iv);
554                 req = &subreq;
555                 err = skcipher_walk_virt(&walk, req, false);
556         } else {
557                 tail = 0;
558         }
559
560         for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
561                 int nbytes = walk.nbytes;
562
563                 if (walk.nbytes < walk.total)
564                         nbytes &= ~(AES_BLOCK_SIZE - 1);
565
566                 kernel_neon_begin();
567                 aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
568                                 ctx->key1.key_enc, rounds, nbytes,
569                                 ctx->key2.key_enc, walk.iv, first);
570                 kernel_neon_end();
571                 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
572         }
573
574         if (err || likely(!tail))
575                 return err;
576
577         dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
578         if (req->dst != req->src)
579                 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
580
581         skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
582                                    req->iv);
583
584         err = skcipher_walk_virt(&walk, &subreq, false);
585         if (err)
586                 return err;
587
588         kernel_neon_begin();
589         aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
590                         ctx->key1.key_enc, rounds, walk.nbytes,
591                         ctx->key2.key_enc, walk.iv, first);
592         kernel_neon_end();
593
594         return skcipher_walk_done(&walk, 0);
595 }
596
597 static int __maybe_unused xts_decrypt(struct skcipher_request *req)
598 {
599         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
600         struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
601         int err, first, rounds = 6 + ctx->key1.key_length / 4;
602         int tail = req->cryptlen % AES_BLOCK_SIZE;
603         struct scatterlist sg_src[2], sg_dst[2];
604         struct skcipher_request subreq;
605         struct scatterlist *src, *dst;
606         struct skcipher_walk walk;
607
608         if (req->cryptlen < AES_BLOCK_SIZE)
609                 return -EINVAL;
610
611         err = skcipher_walk_virt(&walk, req, false);
612
613         if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
614                 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
615                                               AES_BLOCK_SIZE) - 2;
616
617                 skcipher_walk_abort(&walk);
618
619                 skcipher_request_set_tfm(&subreq, tfm);
620                 skcipher_request_set_callback(&subreq,
621                                               skcipher_request_flags(req),
622                                               NULL, NULL);
623                 skcipher_request_set_crypt(&subreq, req->src, req->dst,
624                                            xts_blocks * AES_BLOCK_SIZE,
625                                            req->iv);
626                 req = &subreq;
627                 err = skcipher_walk_virt(&walk, req, false);
628         } else {
629                 tail = 0;
630         }
631
632         for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
633                 int nbytes = walk.nbytes;
634
635                 if (walk.nbytes < walk.total)
636                         nbytes &= ~(AES_BLOCK_SIZE - 1);
637
638                 kernel_neon_begin();
639                 aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
640                                 ctx->key1.key_dec, rounds, nbytes,
641                                 ctx->key2.key_enc, walk.iv, first);
642                 kernel_neon_end();
643                 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
644         }
645
646         if (err || likely(!tail))
647                 return err;
648
649         dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
650         if (req->dst != req->src)
651                 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
652
653         skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
654                                    req->iv);
655
656         err = skcipher_walk_virt(&walk, &subreq, false);
657         if (err)
658                 return err;
659
660
661         kernel_neon_begin();
662         aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
663                         ctx->key1.key_dec, rounds, walk.nbytes,
664                         ctx->key2.key_enc, walk.iv, first);
665         kernel_neon_end();
666
667         return skcipher_walk_done(&walk, 0);
668 }
669
670 static struct skcipher_alg aes_algs[] = { {
671 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !defined(CONFIG_CRYPTO_AES_ARM64_BS)
672         .base = {
673                 .cra_name               = "__ecb(aes)",
674                 .cra_driver_name        = "__ecb-aes-" MODE,
675                 .cra_priority           = PRIO,
676                 .cra_flags              = CRYPTO_ALG_INTERNAL,
677                 .cra_blocksize          = AES_BLOCK_SIZE,
678                 .cra_ctxsize            = sizeof(struct crypto_aes_ctx),
679                 .cra_module             = THIS_MODULE,
680         },
681         .min_keysize    = AES_MIN_KEY_SIZE,
682         .max_keysize    = AES_MAX_KEY_SIZE,
683         .setkey         = skcipher_aes_setkey,
684         .encrypt        = ecb_encrypt,
685         .decrypt        = ecb_decrypt,
686 }, {
687         .base = {
688                 .cra_name               = "__cbc(aes)",
689                 .cra_driver_name        = "__cbc-aes-" MODE,
690                 .cra_priority           = PRIO,
691                 .cra_flags              = CRYPTO_ALG_INTERNAL,
692                 .cra_blocksize          = AES_BLOCK_SIZE,
693                 .cra_ctxsize            = sizeof(struct crypto_aes_ctx),
694                 .cra_module             = THIS_MODULE,
695         },
696         .min_keysize    = AES_MIN_KEY_SIZE,
697         .max_keysize    = AES_MAX_KEY_SIZE,
698         .ivsize         = AES_BLOCK_SIZE,
699         .setkey         = skcipher_aes_setkey,
700         .encrypt        = cbc_encrypt,
701         .decrypt        = cbc_decrypt,
702 }, {
703         .base = {
704                 .cra_name               = "__ctr(aes)",
705                 .cra_driver_name        = "__ctr-aes-" MODE,
706                 .cra_priority           = PRIO,
707                 .cra_flags              = CRYPTO_ALG_INTERNAL,
708                 .cra_blocksize          = 1,
709                 .cra_ctxsize            = sizeof(struct crypto_aes_ctx),
710                 .cra_module             = THIS_MODULE,
711         },
712         .min_keysize    = AES_MIN_KEY_SIZE,
713         .max_keysize    = AES_MAX_KEY_SIZE,
714         .ivsize         = AES_BLOCK_SIZE,
715         .chunksize      = AES_BLOCK_SIZE,
716         .setkey         = skcipher_aes_setkey,
717         .encrypt        = ctr_encrypt,
718         .decrypt        = ctr_encrypt,
719 }, {
720         .base = {
721                 .cra_name               = "ctr(aes)",
722                 .cra_driver_name        = "ctr-aes-" MODE,
723                 .cra_priority           = PRIO - 1,
724                 .cra_blocksize          = 1,
725                 .cra_ctxsize            = sizeof(struct crypto_aes_ctx),
726                 .cra_module             = THIS_MODULE,
727         },
728         .min_keysize    = AES_MIN_KEY_SIZE,
729         .max_keysize    = AES_MAX_KEY_SIZE,
730         .ivsize         = AES_BLOCK_SIZE,
731         .chunksize      = AES_BLOCK_SIZE,
732         .setkey         = skcipher_aes_setkey,
733         .encrypt        = ctr_encrypt_sync,
734         .decrypt        = ctr_encrypt_sync,
735 }, {
736         .base = {
737                 .cra_name               = "__xts(aes)",
738                 .cra_driver_name        = "__xts-aes-" MODE,
739                 .cra_priority           = PRIO,
740                 .cra_flags              = CRYPTO_ALG_INTERNAL,
741                 .cra_blocksize          = AES_BLOCK_SIZE,
742                 .cra_ctxsize            = sizeof(struct crypto_aes_xts_ctx),
743                 .cra_module             = THIS_MODULE,
744         },
745         .min_keysize    = 2 * AES_MIN_KEY_SIZE,
746         .max_keysize    = 2 * AES_MAX_KEY_SIZE,
747         .ivsize         = AES_BLOCK_SIZE,
748         .walksize       = 2 * AES_BLOCK_SIZE,
749         .setkey         = xts_set_key,
750         .encrypt        = xts_encrypt,
751         .decrypt        = xts_decrypt,
752 }, {
753 #endif
754         .base = {
755                 .cra_name               = "__cts(cbc(aes))",
756                 .cra_driver_name        = "__cts-cbc-aes-" MODE,
757                 .cra_priority           = PRIO,
758                 .cra_flags              = CRYPTO_ALG_INTERNAL,
759                 .cra_blocksize          = AES_BLOCK_SIZE,
760                 .cra_ctxsize            = sizeof(struct crypto_aes_ctx),
761                 .cra_module             = THIS_MODULE,
762         },
763         .min_keysize    = AES_MIN_KEY_SIZE,
764         .max_keysize    = AES_MAX_KEY_SIZE,
765         .ivsize         = AES_BLOCK_SIZE,
766         .walksize       = 2 * AES_BLOCK_SIZE,
767         .setkey         = skcipher_aes_setkey,
768         .encrypt        = cts_cbc_encrypt,
769         .decrypt        = cts_cbc_decrypt,
770 }, {
771         .base = {
772                 .cra_name               = "__essiv(cbc(aes),sha256)",
773                 .cra_driver_name        = "__essiv-cbc-aes-sha256-" MODE,
774                 .cra_priority           = PRIO + 1,
775                 .cra_flags              = CRYPTO_ALG_INTERNAL,
776                 .cra_blocksize          = AES_BLOCK_SIZE,
777                 .cra_ctxsize            = sizeof(struct crypto_aes_essiv_cbc_ctx),
778                 .cra_module             = THIS_MODULE,
779         },
780         .min_keysize    = AES_MIN_KEY_SIZE,
781         .max_keysize    = AES_MAX_KEY_SIZE,
782         .ivsize         = AES_BLOCK_SIZE,
783         .setkey         = essiv_cbc_set_key,
784         .encrypt        = essiv_cbc_encrypt,
785         .decrypt        = essiv_cbc_decrypt,
786         .init           = essiv_cbc_init_tfm,
787         .exit           = essiv_cbc_exit_tfm,
788 } };
789
790 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
791                          unsigned int key_len)
792 {
793         struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
794         int err;
795
796         err = aes_expandkey(&ctx->key, in_key, key_len);
797         if (err)
798                 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
799
800         return err;
801 }
802
803 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
804 {
805         u64 a = be64_to_cpu(x->a);
806         u64 b = be64_to_cpu(x->b);
807
808         y->a = cpu_to_be64((a << 1) | (b >> 63));
809         y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
810 }
811
812 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
813                        unsigned int key_len)
814 {
815         struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
816         be128 *consts = (be128 *)ctx->consts;
817         int rounds = 6 + key_len / 4;
818         int err;
819
820         err = cbcmac_setkey(tfm, in_key, key_len);
821         if (err)
822                 return err;
823
824         /* encrypt the zero vector */
825         kernel_neon_begin();
826         aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
827                         rounds, 1);
828         kernel_neon_end();
829
830         cmac_gf128_mul_by_x(consts, consts);
831         cmac_gf128_mul_by_x(consts + 1, consts);
832
833         return 0;
834 }
835
836 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
837                        unsigned int key_len)
838 {
839         static u8 const ks[3][AES_BLOCK_SIZE] = {
840                 { [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
841                 { [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
842                 { [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
843         };
844
845         struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
846         int rounds = 6 + key_len / 4;
847         u8 key[AES_BLOCK_SIZE];
848         int err;
849
850         err = cbcmac_setkey(tfm, in_key, key_len);
851         if (err)
852                 return err;
853
854         kernel_neon_begin();
855         aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
856         aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
857         kernel_neon_end();
858
859         return cbcmac_setkey(tfm, key, sizeof(key));
860 }
861
862 static int mac_init(struct shash_desc *desc)
863 {
864         struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
865
866         memset(ctx->dg, 0, AES_BLOCK_SIZE);
867         ctx->len = 0;
868
869         return 0;
870 }
871
872 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
873                           u8 dg[], int enc_before, int enc_after)
874 {
875         int rounds = 6 + ctx->key_length / 4;
876
877         if (crypto_simd_usable()) {
878                 kernel_neon_begin();
879                 aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
880                                enc_after);
881                 kernel_neon_end();
882         } else {
883                 if (enc_before)
884                         aes_encrypt(ctx, dg, dg);
885
886                 while (blocks--) {
887                         crypto_xor(dg, in, AES_BLOCK_SIZE);
888                         in += AES_BLOCK_SIZE;
889
890                         if (blocks || enc_after)
891                                 aes_encrypt(ctx, dg, dg);
892                 }
893         }
894 }
895
896 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
897 {
898         struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
899         struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
900
901         while (len > 0) {
902                 unsigned int l;
903
904                 if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
905                     (ctx->len + len) > AES_BLOCK_SIZE) {
906
907                         int blocks = len / AES_BLOCK_SIZE;
908
909                         len %= AES_BLOCK_SIZE;
910
911                         mac_do_update(&tctx->key, p, blocks, ctx->dg,
912                                       (ctx->len != 0), (len != 0));
913
914                         p += blocks * AES_BLOCK_SIZE;
915
916                         if (!len) {
917                                 ctx->len = AES_BLOCK_SIZE;
918                                 break;
919                         }
920                         ctx->len = 0;
921                 }
922
923                 l = min(len, AES_BLOCK_SIZE - ctx->len);
924
925                 if (l <= AES_BLOCK_SIZE) {
926                         crypto_xor(ctx->dg + ctx->len, p, l);
927                         ctx->len += l;
928                         len -= l;
929                         p += l;
930                 }
931         }
932
933         return 0;
934 }
935
936 static int cbcmac_final(struct shash_desc *desc, u8 *out)
937 {
938         struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
939         struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
940
941         mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
942
943         memcpy(out, ctx->dg, AES_BLOCK_SIZE);
944
945         return 0;
946 }
947
948 static int cmac_final(struct shash_desc *desc, u8 *out)
949 {
950         struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
951         struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
952         u8 *consts = tctx->consts;
953
954         if (ctx->len != AES_BLOCK_SIZE) {
955                 ctx->dg[ctx->len] ^= 0x80;
956                 consts += AES_BLOCK_SIZE;
957         }
958
959         mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
960
961         memcpy(out, ctx->dg, AES_BLOCK_SIZE);
962
963         return 0;
964 }
965
966 static struct shash_alg mac_algs[] = { {
967         .base.cra_name          = "cmac(aes)",
968         .base.cra_driver_name   = "cmac-aes-" MODE,
969         .base.cra_priority      = PRIO,
970         .base.cra_blocksize     = AES_BLOCK_SIZE,
971         .base.cra_ctxsize       = sizeof(struct mac_tfm_ctx) +
972                                   2 * AES_BLOCK_SIZE,
973         .base.cra_module        = THIS_MODULE,
974
975         .digestsize             = AES_BLOCK_SIZE,
976         .init                   = mac_init,
977         .update                 = mac_update,
978         .final                  = cmac_final,
979         .setkey                 = cmac_setkey,
980         .descsize               = sizeof(struct mac_desc_ctx),
981 }, {
982         .base.cra_name          = "xcbc(aes)",
983         .base.cra_driver_name   = "xcbc-aes-" MODE,
984         .base.cra_priority      = PRIO,
985         .base.cra_blocksize     = AES_BLOCK_SIZE,
986         .base.cra_ctxsize       = sizeof(struct mac_tfm_ctx) +
987                                   2 * AES_BLOCK_SIZE,
988         .base.cra_module        = THIS_MODULE,
989
990         .digestsize             = AES_BLOCK_SIZE,
991         .init                   = mac_init,
992         .update                 = mac_update,
993         .final                  = cmac_final,
994         .setkey                 = xcbc_setkey,
995         .descsize               = sizeof(struct mac_desc_ctx),
996 }, {
997         .base.cra_name          = "cbcmac(aes)",
998         .base.cra_driver_name   = "cbcmac-aes-" MODE,
999         .base.cra_priority      = PRIO,
1000         .base.cra_blocksize     = 1,
1001         .base.cra_ctxsize       = sizeof(struct mac_tfm_ctx),
1002         .base.cra_module        = THIS_MODULE,
1003
1004         .digestsize             = AES_BLOCK_SIZE,
1005         .init                   = mac_init,
1006         .update                 = mac_update,
1007         .final                  = cbcmac_final,
1008         .setkey                 = cbcmac_setkey,
1009         .descsize               = sizeof(struct mac_desc_ctx),
1010 } };
1011
1012 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
1013
1014 static void aes_exit(void)
1015 {
1016         int i;
1017
1018         for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
1019                 if (aes_simd_algs[i])
1020                         simd_skcipher_free(aes_simd_algs[i]);
1021
1022         crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
1023         crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1024 }
1025
1026 static int __init aes_init(void)
1027 {
1028         struct simd_skcipher_alg *simd;
1029         const char *basename;
1030         const char *algname;
1031         const char *drvname;
1032         int err;
1033         int i;
1034
1035         err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1036         if (err)
1037                 return err;
1038
1039         err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
1040         if (err)
1041                 goto unregister_ciphers;
1042
1043         for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1044                 if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
1045                         continue;
1046
1047                 algname = aes_algs[i].base.cra_name + 2;
1048                 drvname = aes_algs[i].base.cra_driver_name + 2;
1049                 basename = aes_algs[i].base.cra_driver_name;
1050                 simd = simd_skcipher_create_compat(algname, drvname, basename);
1051                 err = PTR_ERR(simd);
1052                 if (IS_ERR(simd))
1053                         goto unregister_simds;
1054
1055                 aes_simd_algs[i] = simd;
1056         }
1057
1058         return 0;
1059
1060 unregister_simds:
1061         aes_exit();
1062         return err;
1063 unregister_ciphers:
1064         crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1065         return err;
1066 }
1067
1068 #ifdef USE_V8_CRYPTO_EXTENSIONS
1069 module_cpu_feature_match(AES, aes_init);
1070 #else
1071 module_init(aes_init);
1072 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
1073 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
1074 EXPORT_SYMBOL(neon_aes_xts_encrypt);
1075 EXPORT_SYMBOL(neon_aes_xts_decrypt);
1076 #endif
1077 module_exit(aes_exit);