Linux 6.9-rc1
[linux-2.6-microblaze.git] / arch / arm / nwfpe / entry.S
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3     NetWinder Floating Point Emulator
4     (c) Rebel.COM, 1998
5     (c) 1998, 1999 Philip Blundell
6
7     Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
8
9 */
10 #include <linux/linkage.h>
11 #include <asm/assembler.h>
12 #include <asm/opcodes.h>
13
14 /* This is the kernel's entry point into the floating point emulator.
15 It is called from the kernel with code similar to this:
16
17         sub     r4, r5, #4
18         ldrt    r0, [r4]                        @ r0  = instruction
19         adrsvc  al, r9, ret_from_exception      @ r9  = normal FP return
20         adrsvc  al, lr, fpundefinstr            @ lr  = undefined instr return
21
22         get_current_task r10
23         mov     r8, #1
24         strb    r8, [r10, #TSK_USED_MATH]       @ set current->used_math
25         add     r10, r10, #TSS_FPESAVE          @ r10 = workspace
26         ldr     r4, .LC2
27         ldr     pc, [r4]                        @ Call FP emulator entry point
28
29 The kernel expects the emulator to return via one of two possible
30 points of return it passes to the emulator.  The emulator, if
31 successful in its emulation, jumps to ret_from_exception (passed in
32 r9) and the kernel takes care of returning control from the trap to
33 the user code.  If the emulator is unable to emulate the instruction,
34 it returns via _fpundefinstr (passed via lr) and the kernel halts the
35 user program with a core dump.
36
37 On entry to the emulator r10 points to an area of private FP workspace
38 reserved in the thread structure for this process.  This is where the
39 emulator saves its registers across calls.  The first word of this area
40 is used as a flag to detect the first time a process uses floating point,
41 so that the emulator startup cost can be avoided for tasks that don't
42 want it.
43
44 This routine does three things:
45
46 1) The kernel has created a struct pt_regs on the stack and saved the
47 user registers into it.  See /usr/include/asm/proc/ptrace.h for details.
48
49 2) It calls EmulateAll to emulate a floating point instruction.
50 EmulateAll returns 1 if the emulation was successful, or 0 if not.
51
52 3) If an instruction has been emulated successfully, it looks ahead at
53 the next instruction.  If it is a floating point instruction, it
54 executes the instruction, without returning to user space.  In this
55 way it repeatedly looks ahead and executes floating point instructions
56 until it encounters a non floating point instruction, at which time it
57 returns via _fpreturn.
58
59 This is done to reduce the effect of the trap overhead on each
60 floating point instructions.  GCC attempts to group floating point
61 instructions to allow the emulator to spread the cost of the trap over
62 several floating point instructions.  */
63
64 #include <asm/asm-offsets.h>
65
66         .globl  nwfpe_enter
67 nwfpe_enter:
68         mov     r4, lr                  @ save the failure-return addresses
69         mov     sl, sp                  @ we access the registers via 'sl'
70
71         ldr     r5, [sp, #S_PC]         @ get contents of PC;
72         mov     r6, r0                  @ save the opcode
73 emulate:
74         ldr     r1, [sp, #S_PSR]        @ fetch the PSR
75         bl      arm_check_condition     @ check the condition
76         cmp     r0, #ARM_OPCODE_CONDTEST_PASS   @ condition passed?
77
78         @ if condition code failed to match, next insn
79         bne     next                    @ get the next instruction;
80
81         mov     r0, r6                  @ prepare for EmulateAll()
82         bl      EmulateAll              @ emulate the instruction
83         cmp     r0, #0                  @ was emulation successful
84         reteq   r4                      @ no, return failure
85
86 next:
87         uaccess_enable r3
88 .Lx1:   ldrt    r6, [r5], #4            @ get the next instruction and
89                                         @ increment PC
90         uaccess_disable r3
91         and     r2, r6, #0x0F000000     @ test for FP insns
92         teq     r2, #0x0C000000
93         teqne   r2, #0x0D000000
94         teqne   r2, #0x0E000000
95         retne   r9                      @ return ok if not a fp insn
96
97         str     r5, [sp, #S_PC]         @ update PC copy in regs
98
99         mov     r0, r6                  @ save a copy
100         b       emulate                 @ check condition and emulate
101
102         @ We need to be prepared for the instructions at .Lx1 and .Lx2 
103         @ to fault.  Emit the appropriate exception gunk to fix things up.
104         @ ??? For some reason, faults can happen at .Lx2 even with a
105         @ plain LDR instruction.  Weird, but it seems harmless.
106         .pushsection .text.fixup,"ax"
107         .align  2
108 .Lrep:  str     r4, [sp, #S_PC]         @ retry current instruction
109 .Lfix:  ret     r9                      @ let the user eat segfaults
110         .popsection
111
112         .pushsection __ex_table,"a"
113         .align  3
114         .long   .Lx1, .Lfix
115         .popsection
116
117         @
118         @ Check whether the instruction is a co-processor instruction.
119         @ If yes, we need to call the relevant co-processor handler.
120         @ Only FPE instructions are dispatched here, everything else
121         @ is handled by undef hooks.
122         @
123         @ Emulators may wish to make use of the following registers:
124         @  r4  = PC value to resume execution after successful emulation
125         @  r9  = normal "successful" return address
126         @  lr  = unrecognised instruction return address
127         @ IRQs enabled, FIQs enabled.
128         @
129 ENTRY(call_fpe)
130         mov     r2, r4
131         sub     r4, r4, #4                      @ ARM instruction at user PC - 4
132 USERL(  .Lrep,  ldrt r0, [r4])                  @ load opcode from user space
133 ARM_BE8(rev     r0, r0)                         @ little endian instruction
134
135         uaccess_disable ip
136
137         get_thread_info r10                     @ get current thread
138         tst     r0, #0x08000000                 @ only CDP/CPRT/LDC/STC have bit 27
139         reteq   lr
140         and     r8, r0, #0x00000f00             @ mask out CP number
141 #ifdef CONFIG_IWMMXT
142         @ Test if we need to give access to iWMMXt coprocessors
143         ldr     r5, [r10, #TI_FLAGS]
144         rsbs    r7, r8, #(1 << 8)               @ CP 0 or 1 only
145         movscs  r7, r5, lsr #(TIF_USING_IWMMXT + 1)
146         movcs   r0, sp                          @ pass struct pt_regs
147         bcs     iwmmxt_task_enable
148 #endif
149         add     pc, pc, r8, lsr #6
150         nop
151
152         ret     lr                              @ CP#0
153         b       do_fpe                          @ CP#1 (FPE)
154         b       do_fpe                          @ CP#2 (FPE)
155         ret     lr                              @ CP#3
156         ret     lr                              @ CP#4
157         ret     lr                              @ CP#5
158         ret     lr                              @ CP#6
159         ret     lr                              @ CP#7
160         ret     lr                              @ CP#8
161         ret     lr                              @ CP#9
162         ret     lr                              @ CP#10 (VFP)
163         ret     lr                              @ CP#11 (VFP)
164         ret     lr                              @ CP#12
165         ret     lr                              @ CP#13
166         ret     lr                              @ CP#14 (Debug)
167         ret     lr                              @ CP#15 (Control)
168
169 do_fpe:
170         add     r10, r10, #TI_FPSTATE           @ r10 = workspace
171         ldr_va  pc, fp_enter, tmp=r4            @ Call FP module USR entry point
172
173         @
174         @ The FP module is called with these registers set:
175         @  r0  = instruction
176         @  r2  = PC+4
177         @  r9  = normal "successful" return address
178         @  r10 = FP workspace
179         @  lr  = unrecognised FP instruction return address
180         @
181
182         .pushsection .data
183         .align  2
184 ENTRY(fp_enter)
185         .word   no_fp
186         .popsection
187
188 no_fp:
189         ret     lr
190 ENDPROC(no_fp)