Merge tag 'auxdisplay-for-linus-v5.15-rc1' of git://github.com/ojeda/linux
[linux-2.6-microblaze.git] / arch / arm / mach-sunxi / mc_smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018 Chen-Yu Tsai
4  *
5  * Chen-Yu Tsai <wens@csie.org>
6  *
7  * arch/arm/mach-sunxi/mc_smp.c
8  *
9  * Based on Allwinner code, arch/arm/mach-exynos/mcpm-exynos.c, and
10  * arch/arm/mach-hisi/platmcpm.c
11  * Cluster cache enable trampoline code adapted from MCPM framework
12  */
13
14 #include <linux/arm-cci.h>
15 #include <linux/cpu_pm.h>
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/irqchip/arm-gic.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/of_device.h>
23 #include <linux/smp.h>
24
25 #include <asm/cacheflush.h>
26 #include <asm/cp15.h>
27 #include <asm/cputype.h>
28 #include <asm/idmap.h>
29 #include <asm/smp_plat.h>
30 #include <asm/suspend.h>
31
32 #define SUNXI_CPUS_PER_CLUSTER          4
33 #define SUNXI_NR_CLUSTERS               2
34
35 #define POLL_USEC       100
36 #define TIMEOUT_USEC    100000
37
38 #define CPUCFG_CX_CTRL_REG0(c)          (0x10 * (c))
39 #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(n)   BIT(n)
40 #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL  0xf
41 #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7   BIT(4)
42 #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15  BIT(0)
43 #define CPUCFG_CX_CTRL_REG1(c)          (0x10 * (c) + 0x4)
44 #define CPUCFG_CX_CTRL_REG1_ACINACTM    BIT(0)
45 #define CPUCFG_CX_STATUS(c)             (0x30 + 0x4 * (c))
46 #define CPUCFG_CX_STATUS_STANDBYWFI(n)  BIT(16 + (n))
47 #define CPUCFG_CX_STATUS_STANDBYWFIL2   BIT(0)
48 #define CPUCFG_CX_RST_CTRL(c)           (0x80 + 0x4 * (c))
49 #define CPUCFG_CX_RST_CTRL_DBG_SOC_RST  BIT(24)
50 #define CPUCFG_CX_RST_CTRL_ETM_RST(n)   BIT(20 + (n))
51 #define CPUCFG_CX_RST_CTRL_ETM_RST_ALL  (0xf << 20)
52 #define CPUCFG_CX_RST_CTRL_DBG_RST(n)   BIT(16 + (n))
53 #define CPUCFG_CX_RST_CTRL_DBG_RST_ALL  (0xf << 16)
54 #define CPUCFG_CX_RST_CTRL_H_RST        BIT(12)
55 #define CPUCFG_CX_RST_CTRL_L2_RST       BIT(8)
56 #define CPUCFG_CX_RST_CTRL_CX_RST(n)    BIT(4 + (n))
57 #define CPUCFG_CX_RST_CTRL_CORE_RST(n)  BIT(n)
58 #define CPUCFG_CX_RST_CTRL_CORE_RST_ALL (0xf << 0)
59
60 #define PRCM_CPU_PO_RST_CTRL(c)         (0x4 + 0x4 * (c))
61 #define PRCM_CPU_PO_RST_CTRL_CORE(n)    BIT(n)
62 #define PRCM_CPU_PO_RST_CTRL_CORE_ALL   0xf
63 #define PRCM_PWROFF_GATING_REG(c)       (0x100 + 0x4 * (c))
64 /* The power off register for clusters are different from a80 and a83t */
65 #define PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I    BIT(0)
66 #define PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I    BIT(4)
67 #define PRCM_PWROFF_GATING_REG_CORE(n)  BIT(n)
68 #define PRCM_PWR_SWITCH_REG(c, cpu)     (0x140 + 0x10 * (c) + 0x4 * (cpu))
69 #define PRCM_CPU_SOFT_ENTRY_REG         0x164
70
71 /* R_CPUCFG registers, specific to sun8i-a83t */
72 #define R_CPUCFG_CLUSTER_PO_RST_CTRL(c) (0x30 + (c) * 0x4)
73 #define R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(n)    BIT(n)
74 #define R_CPUCFG_CPU_SOFT_ENTRY_REG             0x01a4
75
76 #define CPU0_SUPPORT_HOTPLUG_MAGIC0     0xFA50392F
77 #define CPU0_SUPPORT_HOTPLUG_MAGIC1     0x790DCA3A
78
79 static void __iomem *cpucfg_base;
80 static void __iomem *prcm_base;
81 static void __iomem *sram_b_smp_base;
82 static void __iomem *r_cpucfg_base;
83
84 extern void sunxi_mc_smp_secondary_startup(void);
85 extern void sunxi_mc_smp_resume(void);
86 static bool is_a83t;
87
88 static bool sunxi_core_is_cortex_a15(unsigned int core, unsigned int cluster)
89 {
90         struct device_node *node;
91         int cpu = cluster * SUNXI_CPUS_PER_CLUSTER + core;
92         bool is_compatible;
93
94         node = of_cpu_device_node_get(cpu);
95
96         /* In case of_cpu_device_node_get fails */
97         if (!node)
98                 node = of_get_cpu_node(cpu, NULL);
99
100         if (!node) {
101                 /*
102                  * There's no point in returning an error, since we
103                  * would be mid way in a core or cluster power sequence.
104                  */
105                 pr_err("%s: Couldn't get CPU cluster %u core %u device node\n",
106                        __func__, cluster, core);
107
108                 return false;
109         }
110
111         is_compatible = of_device_is_compatible(node, "arm,cortex-a15");
112         of_node_put(node);
113         return is_compatible;
114 }
115
116 static int sunxi_cpu_power_switch_set(unsigned int cpu, unsigned int cluster,
117                                       bool enable)
118 {
119         u32 reg;
120
121         /* control sequence from Allwinner A80 user manual v1.2 PRCM section */
122         reg = readl(prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
123         if (enable) {
124                 if (reg == 0x00) {
125                         pr_debug("power clamp for cluster %u cpu %u already open\n",
126                                  cluster, cpu);
127                         return 0;
128                 }
129
130                 writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
131                 udelay(10);
132                 writel(0xfe, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
133                 udelay(10);
134                 writel(0xf8, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
135                 udelay(10);
136                 writel(0xf0, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
137                 udelay(10);
138                 writel(0x00, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
139                 udelay(10);
140         } else {
141                 writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
142                 udelay(10);
143         }
144
145         return 0;
146 }
147
148 static void sunxi_cpu0_hotplug_support_set(bool enable)
149 {
150         if (enable) {
151                 writel(CPU0_SUPPORT_HOTPLUG_MAGIC0, sram_b_smp_base);
152                 writel(CPU0_SUPPORT_HOTPLUG_MAGIC1, sram_b_smp_base + 0x4);
153         } else {
154                 writel(0x0, sram_b_smp_base);
155                 writel(0x0, sram_b_smp_base + 0x4);
156         }
157 }
158
159 static int sunxi_cpu_powerup(unsigned int cpu, unsigned int cluster)
160 {
161         u32 reg;
162
163         pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
164         if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS)
165                 return -EINVAL;
166
167         /* Set hotplug support magic flags for cpu0 */
168         if (cluster == 0 && cpu == 0)
169                 sunxi_cpu0_hotplug_support_set(true);
170
171         /* assert processor power-on reset */
172         reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
173         reg &= ~PRCM_CPU_PO_RST_CTRL_CORE(cpu);
174         writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
175
176         if (is_a83t) {
177                 /* assert cpu power-on reset */
178                 reg  = readl(r_cpucfg_base +
179                              R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
180                 reg &= ~(R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu));
181                 writel(reg, r_cpucfg_base +
182                        R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
183                 udelay(10);
184         }
185
186         /* Cortex-A7: hold L1 reset disable signal low */
187         if (!sunxi_core_is_cortex_a15(cpu, cluster)) {
188                 reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
189                 reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(cpu);
190                 writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
191         }
192
193         /* assert processor related resets */
194         reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
195         reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST(cpu);
196
197         /*
198          * Allwinner code also asserts resets for NEON on A15. According
199          * to ARM manuals, asserting power-on reset is sufficient.
200          */
201         if (!sunxi_core_is_cortex_a15(cpu, cluster))
202                 reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST(cpu);
203
204         writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
205
206         /* open power switch */
207         sunxi_cpu_power_switch_set(cpu, cluster, true);
208
209         /* Handle A83T bit swap */
210         if (is_a83t) {
211                 if (cpu == 0)
212                         cpu = 4;
213         }
214
215         /* clear processor power gate */
216         reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
217         reg &= ~PRCM_PWROFF_GATING_REG_CORE(cpu);
218         writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
219         udelay(20);
220
221         /* Handle A83T bit swap */
222         if (is_a83t) {
223                 if (cpu == 4)
224                         cpu = 0;
225         }
226
227         /* de-assert processor power-on reset */
228         reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
229         reg |= PRCM_CPU_PO_RST_CTRL_CORE(cpu);
230         writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
231
232         if (is_a83t) {
233                 reg  = readl(r_cpucfg_base +
234                              R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
235                 reg |= R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu);
236                 writel(reg, r_cpucfg_base +
237                        R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
238                 udelay(10);
239         }
240
241         /* de-assert all processor resets */
242         reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
243         reg |= CPUCFG_CX_RST_CTRL_DBG_RST(cpu);
244         reg |= CPUCFG_CX_RST_CTRL_CORE_RST(cpu);
245         if (!sunxi_core_is_cortex_a15(cpu, cluster))
246                 reg |= CPUCFG_CX_RST_CTRL_ETM_RST(cpu);
247         else
248                 reg |= CPUCFG_CX_RST_CTRL_CX_RST(cpu); /* NEON */
249         writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
250
251         return 0;
252 }
253
254 static int sunxi_cluster_powerup(unsigned int cluster)
255 {
256         u32 reg;
257
258         pr_debug("%s: cluster %u\n", __func__, cluster);
259         if (cluster >= SUNXI_NR_CLUSTERS)
260                 return -EINVAL;
261
262         /* For A83T, assert cluster cores resets */
263         if (is_a83t) {
264                 reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
265                 reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL;   /* Core Reset    */
266                 writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
267                 udelay(10);
268         }
269
270         /* assert ACINACTM */
271         reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
272         reg |= CPUCFG_CX_CTRL_REG1_ACINACTM;
273         writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
274
275         /* assert cluster processor power-on resets */
276         reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
277         reg &= ~PRCM_CPU_PO_RST_CTRL_CORE_ALL;
278         writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
279
280         /* assert cluster cores resets */
281         if (is_a83t) {
282                 reg  = readl(r_cpucfg_base +
283                              R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
284                 reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL;
285                 writel(reg, r_cpucfg_base +
286                        R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
287                 udelay(10);
288         }
289
290         /* assert cluster resets */
291         reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
292         reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
293         reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST_ALL;
294         reg &= ~CPUCFG_CX_RST_CTRL_H_RST;
295         reg &= ~CPUCFG_CX_RST_CTRL_L2_RST;
296
297         /*
298          * Allwinner code also asserts resets for NEON on A15. According
299          * to ARM manuals, asserting power-on reset is sufficient.
300          */
301         if (!sunxi_core_is_cortex_a15(0, cluster))
302                 reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST_ALL;
303
304         writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
305
306         /* hold L1/L2 reset disable signals low */
307         reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
308         if (sunxi_core_is_cortex_a15(0, cluster)) {
309                 /* Cortex-A15: hold L2RSTDISABLE low */
310                 reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15;
311         } else {
312                 /* Cortex-A7: hold L1RSTDISABLE and L2RSTDISABLE low */
313                 reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL;
314                 reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7;
315         }
316         writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
317
318         /* clear cluster power gate */
319         reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
320         if (is_a83t)
321                 reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I;
322         else
323                 reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I;
324         writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
325         udelay(20);
326
327         /* de-assert cluster resets */
328         reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
329         reg |= CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
330         reg |= CPUCFG_CX_RST_CTRL_H_RST;
331         reg |= CPUCFG_CX_RST_CTRL_L2_RST;
332         writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
333
334         /* de-assert ACINACTM */
335         reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
336         reg &= ~CPUCFG_CX_CTRL_REG1_ACINACTM;
337         writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
338
339         return 0;
340 }
341
342 /*
343  * This bit is shared between the initial nocache_trampoline call to
344  * enable CCI-400 and proper cluster cache disable before power down.
345  */
346 static void sunxi_cluster_cache_disable_without_axi(void)
347 {
348         if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
349                 /*
350                  * On the Cortex-A15 we need to disable
351                  * L2 prefetching before flushing the cache.
352                  */
353                 asm volatile(
354                 "mcr    p15, 1, %0, c15, c0, 3\n"
355                 "isb\n"
356                 "dsb"
357                 : : "r" (0x400));
358         }
359
360         /* Flush all cache levels for this cluster. */
361         v7_exit_coherency_flush(all);
362
363         /*
364          * Disable cluster-level coherency by masking
365          * incoming snoops and DVM messages:
366          */
367         cci_disable_port_by_cpu(read_cpuid_mpidr());
368 }
369
370 static int sunxi_mc_smp_cpu_table[SUNXI_NR_CLUSTERS][SUNXI_CPUS_PER_CLUSTER];
371 int sunxi_mc_smp_first_comer;
372
373 static DEFINE_SPINLOCK(boot_lock);
374
375 static bool sunxi_mc_smp_cluster_is_down(unsigned int cluster)
376 {
377         int i;
378
379         for (i = 0; i < SUNXI_CPUS_PER_CLUSTER; i++)
380                 if (sunxi_mc_smp_cpu_table[cluster][i])
381                         return false;
382         return true;
383 }
384
385 static void sunxi_mc_smp_secondary_init(unsigned int cpu)
386 {
387         /* Clear hotplug support magic flags for cpu0 */
388         if (cpu == 0)
389                 sunxi_cpu0_hotplug_support_set(false);
390 }
391
392 static int sunxi_mc_smp_boot_secondary(unsigned int l_cpu, struct task_struct *idle)
393 {
394         unsigned int mpidr, cpu, cluster;
395
396         mpidr = cpu_logical_map(l_cpu);
397         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
398         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
399
400         if (!cpucfg_base)
401                 return -ENODEV;
402         if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER)
403                 return -EINVAL;
404
405         spin_lock_irq(&boot_lock);
406
407         if (sunxi_mc_smp_cpu_table[cluster][cpu])
408                 goto out;
409
410         if (sunxi_mc_smp_cluster_is_down(cluster)) {
411                 sunxi_mc_smp_first_comer = true;
412                 sunxi_cluster_powerup(cluster);
413         } else {
414                 sunxi_mc_smp_first_comer = false;
415         }
416
417         /* This is read by incoming CPUs with their cache and MMU disabled */
418         sync_cache_w(&sunxi_mc_smp_first_comer);
419         sunxi_cpu_powerup(cpu, cluster);
420
421 out:
422         sunxi_mc_smp_cpu_table[cluster][cpu]++;
423         spin_unlock_irq(&boot_lock);
424
425         return 0;
426 }
427
428 #ifdef CONFIG_HOTPLUG_CPU
429 static void sunxi_cluster_cache_disable(void)
430 {
431         unsigned int cluster = MPIDR_AFFINITY_LEVEL(read_cpuid_mpidr(), 1);
432         u32 reg;
433
434         pr_debug("%s: cluster %u\n", __func__, cluster);
435
436         sunxi_cluster_cache_disable_without_axi();
437
438         /* last man standing, assert ACINACTM */
439         reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
440         reg |= CPUCFG_CX_CTRL_REG1_ACINACTM;
441         writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
442 }
443
444 static void sunxi_mc_smp_cpu_die(unsigned int l_cpu)
445 {
446         unsigned int mpidr, cpu, cluster;
447         bool last_man;
448
449         mpidr = cpu_logical_map(l_cpu);
450         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
451         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
452         pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
453
454         spin_lock(&boot_lock);
455         sunxi_mc_smp_cpu_table[cluster][cpu]--;
456         if (sunxi_mc_smp_cpu_table[cluster][cpu] == 1) {
457                 /* A power_up request went ahead of us. */
458                 pr_debug("%s: aborting due to a power up request\n",
459                          __func__);
460                 spin_unlock(&boot_lock);
461                 return;
462         } else if (sunxi_mc_smp_cpu_table[cluster][cpu] > 1) {
463                 pr_err("Cluster %d CPU%d boots multiple times\n",
464                        cluster, cpu);
465                 BUG();
466         }
467
468         last_man = sunxi_mc_smp_cluster_is_down(cluster);
469         spin_unlock(&boot_lock);
470
471         gic_cpu_if_down(0);
472         if (last_man)
473                 sunxi_cluster_cache_disable();
474         else
475                 v7_exit_coherency_flush(louis);
476
477         for (;;)
478                 wfi();
479 }
480
481 static int sunxi_cpu_powerdown(unsigned int cpu, unsigned int cluster)
482 {
483         u32 reg;
484         int gating_bit = cpu;
485
486         pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
487         if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS)
488                 return -EINVAL;
489
490         if (is_a83t && cpu == 0)
491                 gating_bit = 4;
492
493         /* gate processor power */
494         reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
495         reg |= PRCM_PWROFF_GATING_REG_CORE(gating_bit);
496         writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
497         udelay(20);
498
499         /* close power switch */
500         sunxi_cpu_power_switch_set(cpu, cluster, false);
501
502         return 0;
503 }
504
505 static int sunxi_cluster_powerdown(unsigned int cluster)
506 {
507         u32 reg;
508
509         pr_debug("%s: cluster %u\n", __func__, cluster);
510         if (cluster >= SUNXI_NR_CLUSTERS)
511                 return -EINVAL;
512
513         /* assert cluster resets or system will hang */
514         pr_debug("%s: assert cluster reset\n", __func__);
515         reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
516         reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
517         reg &= ~CPUCFG_CX_RST_CTRL_H_RST;
518         reg &= ~CPUCFG_CX_RST_CTRL_L2_RST;
519         writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
520
521         /* gate cluster power */
522         pr_debug("%s: gate cluster power\n", __func__);
523         reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
524         if (is_a83t)
525                 reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I;
526         else
527                 reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I;
528         writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
529         udelay(20);
530
531         return 0;
532 }
533
534 static int sunxi_mc_smp_cpu_kill(unsigned int l_cpu)
535 {
536         unsigned int mpidr, cpu, cluster;
537         unsigned int tries, count;
538         int ret = 0;
539         u32 reg;
540
541         mpidr = cpu_logical_map(l_cpu);
542         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
543         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
544
545         /* This should never happen */
546         if (WARN_ON(cluster >= SUNXI_NR_CLUSTERS ||
547                     cpu >= SUNXI_CPUS_PER_CLUSTER))
548                 return 0;
549
550         /* wait for CPU core to die and enter WFI */
551         count = TIMEOUT_USEC / POLL_USEC;
552         spin_lock_irq(&boot_lock);
553         for (tries = 0; tries < count; tries++) {
554                 spin_unlock_irq(&boot_lock);
555                 usleep_range(POLL_USEC / 2, POLL_USEC);
556                 spin_lock_irq(&boot_lock);
557
558                 /*
559                  * If the user turns off a bunch of cores at the same
560                  * time, the kernel might call cpu_kill before some of
561                  * them are ready. This is because boot_lock serializes
562                  * both cpu_die and cpu_kill callbacks. Either one could
563                  * run first. We should wait for cpu_die to complete.
564                  */
565                 if (sunxi_mc_smp_cpu_table[cluster][cpu])
566                         continue;
567
568                 reg = readl(cpucfg_base + CPUCFG_CX_STATUS(cluster));
569                 if (reg & CPUCFG_CX_STATUS_STANDBYWFI(cpu))
570                         break;
571         }
572
573         if (tries >= count) {
574                 ret = ETIMEDOUT;
575                 goto out;
576         }
577
578         /* power down CPU core */
579         sunxi_cpu_powerdown(cpu, cluster);
580
581         if (!sunxi_mc_smp_cluster_is_down(cluster))
582                 goto out;
583
584         /* wait for cluster L2 WFI */
585         ret = readl_poll_timeout(cpucfg_base + CPUCFG_CX_STATUS(cluster), reg,
586                                  reg & CPUCFG_CX_STATUS_STANDBYWFIL2,
587                                  POLL_USEC, TIMEOUT_USEC);
588         if (ret) {
589                 /*
590                  * Ignore timeout on the cluster. Leaving the cluster on
591                  * will not affect system execution, just use a bit more
592                  * power. But returning an error here will only confuse
593                  * the user as the CPU has already been shutdown.
594                  */
595                 ret = 0;
596                 goto out;
597         }
598
599         /* Power down cluster */
600         sunxi_cluster_powerdown(cluster);
601
602 out:
603         spin_unlock_irq(&boot_lock);
604         pr_debug("%s: cluster %u cpu %u powerdown: %d\n",
605                  __func__, cluster, cpu, ret);
606         return !ret;
607 }
608
609 static bool sunxi_mc_smp_cpu_can_disable(unsigned int cpu)
610 {
611         /* CPU0 hotplug not handled for sun8i-a83t */
612         if (is_a83t)
613                 if (cpu == 0)
614                         return false;
615         return true;
616 }
617 #endif
618
619 static const struct smp_operations sunxi_mc_smp_smp_ops __initconst = {
620         .smp_secondary_init     = sunxi_mc_smp_secondary_init,
621         .smp_boot_secondary     = sunxi_mc_smp_boot_secondary,
622 #ifdef CONFIG_HOTPLUG_CPU
623         .cpu_die                = sunxi_mc_smp_cpu_die,
624         .cpu_kill               = sunxi_mc_smp_cpu_kill,
625         .cpu_can_disable        = sunxi_mc_smp_cpu_can_disable,
626 #endif
627 };
628
629 static bool __init sunxi_mc_smp_cpu_table_init(void)
630 {
631         unsigned int mpidr, cpu, cluster;
632
633         mpidr = read_cpuid_mpidr();
634         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
635         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
636
637         if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER) {
638                 pr_err("%s: boot CPU is out of bounds!\n", __func__);
639                 return false;
640         }
641         sunxi_mc_smp_cpu_table[cluster][cpu] = 1;
642         return true;
643 }
644
645 /*
646  * Adapted from arch/arm/common/mc_smp_entry.c
647  *
648  * We need the trampoline code to enable CCI-400 on the first cluster
649  */
650 typedef typeof(cpu_reset) phys_reset_t;
651
652 static int __init nocache_trampoline(unsigned long __unused)
653 {
654         phys_reset_t phys_reset;
655
656         setup_mm_for_reboot();
657         sunxi_cluster_cache_disable_without_axi();
658
659         phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
660         phys_reset(__pa_symbol(sunxi_mc_smp_resume), false);
661         BUG();
662 }
663
664 static int __init sunxi_mc_smp_loopback(void)
665 {
666         int ret;
667
668         /*
669          * We're going to soft-restart the current CPU through the
670          * low-level MCPM code by leveraging the suspend/resume
671          * infrastructure. Let's play it safe by using cpu_pm_enter()
672          * in case the CPU init code path resets the VFP or similar.
673          */
674         sunxi_mc_smp_first_comer = true;
675         local_irq_disable();
676         local_fiq_disable();
677         ret = cpu_pm_enter();
678         if (!ret) {
679                 ret = cpu_suspend(0, nocache_trampoline);
680                 cpu_pm_exit();
681         }
682         local_fiq_enable();
683         local_irq_enable();
684         sunxi_mc_smp_first_comer = false;
685
686         return ret;
687 }
688
689 /*
690  * This holds any device nodes that we requested resources for,
691  * so that we may easily release resources in the error path.
692  */
693 struct sunxi_mc_smp_nodes {
694         struct device_node *prcm_node;
695         struct device_node *cpucfg_node;
696         struct device_node *sram_node;
697         struct device_node *r_cpucfg_node;
698 };
699
700 /* This structure holds SoC-specific bits tied to an enable-method string. */
701 struct sunxi_mc_smp_data {
702         const char *enable_method;
703         int (*get_smp_nodes)(struct sunxi_mc_smp_nodes *nodes);
704         bool is_a83t;
705 };
706
707 static void __init sunxi_mc_smp_put_nodes(struct sunxi_mc_smp_nodes *nodes)
708 {
709         of_node_put(nodes->prcm_node);
710         of_node_put(nodes->cpucfg_node);
711         of_node_put(nodes->sram_node);
712         of_node_put(nodes->r_cpucfg_node);
713         memset(nodes, 0, sizeof(*nodes));
714 }
715
716 static int __init sun9i_a80_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes)
717 {
718         nodes->prcm_node = of_find_compatible_node(NULL, NULL,
719                                                    "allwinner,sun9i-a80-prcm");
720         if (!nodes->prcm_node) {
721                 pr_err("%s: PRCM not available\n", __func__);
722                 return -ENODEV;
723         }
724
725         nodes->cpucfg_node = of_find_compatible_node(NULL, NULL,
726                                                      "allwinner,sun9i-a80-cpucfg");
727         if (!nodes->cpucfg_node) {
728                 pr_err("%s: CPUCFG not available\n", __func__);
729                 return -ENODEV;
730         }
731
732         nodes->sram_node = of_find_compatible_node(NULL, NULL,
733                                                    "allwinner,sun9i-a80-smp-sram");
734         if (!nodes->sram_node) {
735                 pr_err("%s: Secure SRAM not available\n", __func__);
736                 return -ENODEV;
737         }
738
739         return 0;
740 }
741
742 static int __init sun8i_a83t_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes)
743 {
744         nodes->prcm_node = of_find_compatible_node(NULL, NULL,
745                                                    "allwinner,sun8i-a83t-r-ccu");
746         if (!nodes->prcm_node) {
747                 pr_err("%s: PRCM not available\n", __func__);
748                 return -ENODEV;
749         }
750
751         nodes->cpucfg_node = of_find_compatible_node(NULL, NULL,
752                                                      "allwinner,sun8i-a83t-cpucfg");
753         if (!nodes->cpucfg_node) {
754                 pr_err("%s: CPUCFG not available\n", __func__);
755                 return -ENODEV;
756         }
757
758         nodes->r_cpucfg_node = of_find_compatible_node(NULL, NULL,
759                                                        "allwinner,sun8i-a83t-r-cpucfg");
760         if (!nodes->r_cpucfg_node) {
761                 pr_err("%s: RCPUCFG not available\n", __func__);
762                 return -ENODEV;
763         }
764
765         return 0;
766 }
767
768 static const struct sunxi_mc_smp_data sunxi_mc_smp_data[] __initconst = {
769         {
770                 .enable_method  = "allwinner,sun9i-a80-smp",
771                 .get_smp_nodes  = sun9i_a80_get_smp_nodes,
772         },
773         {
774                 .enable_method  = "allwinner,sun8i-a83t-smp",
775                 .get_smp_nodes  = sun8i_a83t_get_smp_nodes,
776                 .is_a83t        = true,
777         },
778 };
779
780 static int __init sunxi_mc_smp_init(void)
781 {
782         struct sunxi_mc_smp_nodes nodes = { 0 };
783         struct device_node *node;
784         struct resource res;
785         void __iomem *addr;
786         int i, ret;
787
788         /*
789          * Don't bother checking the "cpus" node, as an enable-method
790          * property in that node is undocumented.
791          */
792         node = of_cpu_device_node_get(0);
793         if (!node)
794                 return -ENODEV;
795
796         /*
797          * We can't actually use the enable-method magic in the kernel.
798          * Our loopback / trampoline code uses the CPU suspend framework,
799          * which requires the identity mapping be available. It would not
800          * yet be available if we used the .init_cpus or .prepare_cpus
801          * callbacks in smp_operations, which we would use if we were to
802          * use CPU_METHOD_OF_DECLARE
803          */
804         for (i = 0; i < ARRAY_SIZE(sunxi_mc_smp_data); i++) {
805                 ret = of_property_match_string(node, "enable-method",
806                                                sunxi_mc_smp_data[i].enable_method);
807                 if (!ret)
808                         break;
809         }
810
811         is_a83t = sunxi_mc_smp_data[i].is_a83t;
812
813         of_node_put(node);
814         if (ret)
815                 return -ENODEV;
816
817         if (!sunxi_mc_smp_cpu_table_init())
818                 return -EINVAL;
819
820         if (!cci_probed()) {
821                 pr_err("%s: CCI-400 not available\n", __func__);
822                 return -ENODEV;
823         }
824
825         /* Get needed device tree nodes */
826         ret = sunxi_mc_smp_data[i].get_smp_nodes(&nodes);
827         if (ret)
828                 goto err_put_nodes;
829
830         /*
831          * Unfortunately we can not request the I/O region for the PRCM.
832          * It is shared with the PRCM clock.
833          */
834         prcm_base = of_iomap(nodes.prcm_node, 0);
835         if (!prcm_base) {
836                 pr_err("%s: failed to map PRCM registers\n", __func__);
837                 ret = -ENOMEM;
838                 goto err_put_nodes;
839         }
840
841         cpucfg_base = of_io_request_and_map(nodes.cpucfg_node, 0,
842                                             "sunxi-mc-smp");
843         if (IS_ERR(cpucfg_base)) {
844                 ret = PTR_ERR(cpucfg_base);
845                 pr_err("%s: failed to map CPUCFG registers: %d\n",
846                        __func__, ret);
847                 goto err_unmap_prcm;
848         }
849
850         if (is_a83t) {
851                 r_cpucfg_base = of_io_request_and_map(nodes.r_cpucfg_node,
852                                                       0, "sunxi-mc-smp");
853                 if (IS_ERR(r_cpucfg_base)) {
854                         ret = PTR_ERR(r_cpucfg_base);
855                         pr_err("%s: failed to map R-CPUCFG registers\n",
856                                __func__);
857                         goto err_unmap_release_cpucfg;
858                 }
859         } else {
860                 sram_b_smp_base = of_io_request_and_map(nodes.sram_node, 0,
861                                                         "sunxi-mc-smp");
862                 if (IS_ERR(sram_b_smp_base)) {
863                         ret = PTR_ERR(sram_b_smp_base);
864                         pr_err("%s: failed to map secure SRAM\n", __func__);
865                         goto err_unmap_release_cpucfg;
866                 }
867         }
868
869         /* Configure CCI-400 for boot cluster */
870         ret = sunxi_mc_smp_loopback();
871         if (ret) {
872                 pr_err("%s: failed to configure boot cluster: %d\n",
873                        __func__, ret);
874                 goto err_unmap_release_sram_rcpucfg;
875         }
876
877         /* We don't need the device nodes anymore */
878         sunxi_mc_smp_put_nodes(&nodes);
879
880         /* Set the hardware entry point address */
881         if (is_a83t)
882                 addr = r_cpucfg_base + R_CPUCFG_CPU_SOFT_ENTRY_REG;
883         else
884                 addr = prcm_base + PRCM_CPU_SOFT_ENTRY_REG;
885         writel(__pa_symbol(sunxi_mc_smp_secondary_startup), addr);
886
887         /* Actually enable multi cluster SMP */
888         smp_set_ops(&sunxi_mc_smp_smp_ops);
889
890         pr_info("sunxi multi cluster SMP support installed\n");
891
892         return 0;
893
894 err_unmap_release_sram_rcpucfg:
895         if (is_a83t) {
896                 iounmap(r_cpucfg_base);
897                 of_address_to_resource(nodes.r_cpucfg_node, 0, &res);
898         } else {
899                 iounmap(sram_b_smp_base);
900                 of_address_to_resource(nodes.sram_node, 0, &res);
901         }
902         release_mem_region(res.start, resource_size(&res));
903 err_unmap_release_cpucfg:
904         iounmap(cpucfg_base);
905         of_address_to_resource(nodes.cpucfg_node, 0, &res);
906         release_mem_region(res.start, resource_size(&res));
907 err_unmap_prcm:
908         iounmap(prcm_base);
909 err_put_nodes:
910         sunxi_mc_smp_put_nodes(&nodes);
911         return ret;
912 }
913
914 early_initcall(sunxi_mc_smp_init);