Merge tag 'bitmain-soc-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mani...
[linux-2.6-microblaze.git] / arch / arm / mach-sunxi / mc_smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018 Chen-Yu Tsai
4  *
5  * Chen-Yu Tsai <wens@csie.org>
6  *
7  * arch/arm/mach-sunxi/mc_smp.c
8  *
9  * Based on Allwinner code, arch/arm/mach-exynos/mcpm-exynos.c, and
10  * arch/arm/mach-hisi/platmcpm.c
11  * Cluster cache enable trampoline code adapted from MCPM framework
12  */
13
14 #include <linux/arm-cci.h>
15 #include <linux/cpu_pm.h>
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/irqchip/arm-gic.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/of_device.h>
23 #include <linux/smp.h>
24
25 #include <asm/cacheflush.h>
26 #include <asm/cp15.h>
27 #include <asm/cputype.h>
28 #include <asm/idmap.h>
29 #include <asm/smp_plat.h>
30 #include <asm/suspend.h>
31
32 #define SUNXI_CPUS_PER_CLUSTER          4
33 #define SUNXI_NR_CLUSTERS               2
34
35 #define POLL_USEC       100
36 #define TIMEOUT_USEC    100000
37
38 #define CPUCFG_CX_CTRL_REG0(c)          (0x10 * (c))
39 #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(n)   BIT(n)
40 #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL  0xf
41 #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7   BIT(4)
42 #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15  BIT(0)
43 #define CPUCFG_CX_CTRL_REG1(c)          (0x10 * (c) + 0x4)
44 #define CPUCFG_CX_CTRL_REG1_ACINACTM    BIT(0)
45 #define CPUCFG_CX_STATUS(c)             (0x30 + 0x4 * (c))
46 #define CPUCFG_CX_STATUS_STANDBYWFI(n)  BIT(16 + (n))
47 #define CPUCFG_CX_STATUS_STANDBYWFIL2   BIT(0)
48 #define CPUCFG_CX_RST_CTRL(c)           (0x80 + 0x4 * (c))
49 #define CPUCFG_CX_RST_CTRL_DBG_SOC_RST  BIT(24)
50 #define CPUCFG_CX_RST_CTRL_ETM_RST(n)   BIT(20 + (n))
51 #define CPUCFG_CX_RST_CTRL_ETM_RST_ALL  (0xf << 20)
52 #define CPUCFG_CX_RST_CTRL_DBG_RST(n)   BIT(16 + (n))
53 #define CPUCFG_CX_RST_CTRL_DBG_RST_ALL  (0xf << 16)
54 #define CPUCFG_CX_RST_CTRL_H_RST        BIT(12)
55 #define CPUCFG_CX_RST_CTRL_L2_RST       BIT(8)
56 #define CPUCFG_CX_RST_CTRL_CX_RST(n)    BIT(4 + (n))
57 #define CPUCFG_CX_RST_CTRL_CORE_RST(n)  BIT(n)
58 #define CPUCFG_CX_RST_CTRL_CORE_RST_ALL (0xf << 0)
59
60 #define PRCM_CPU_PO_RST_CTRL(c)         (0x4 + 0x4 * (c))
61 #define PRCM_CPU_PO_RST_CTRL_CORE(n)    BIT(n)
62 #define PRCM_CPU_PO_RST_CTRL_CORE_ALL   0xf
63 #define PRCM_PWROFF_GATING_REG(c)       (0x100 + 0x4 * (c))
64 /* The power off register for clusters are different from a80 and a83t */
65 #define PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I    BIT(0)
66 #define PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I    BIT(4)
67 #define PRCM_PWROFF_GATING_REG_CORE(n)  BIT(n)
68 #define PRCM_PWR_SWITCH_REG(c, cpu)     (0x140 + 0x10 * (c) + 0x4 * (cpu))
69 #define PRCM_CPU_SOFT_ENTRY_REG         0x164
70
71 /* R_CPUCFG registers, specific to sun8i-a83t */
72 #define R_CPUCFG_CLUSTER_PO_RST_CTRL(c) (0x30 + (c) * 0x4)
73 #define R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(n)    BIT(n)
74 #define R_CPUCFG_CPU_SOFT_ENTRY_REG             0x01a4
75
76 #define CPU0_SUPPORT_HOTPLUG_MAGIC0     0xFA50392F
77 #define CPU0_SUPPORT_HOTPLUG_MAGIC1     0x790DCA3A
78
79 static void __iomem *cpucfg_base;
80 static void __iomem *prcm_base;
81 static void __iomem *sram_b_smp_base;
82 static void __iomem *r_cpucfg_base;
83
84 extern void sunxi_mc_smp_secondary_startup(void);
85 extern void sunxi_mc_smp_resume(void);
86 static bool is_a83t;
87
88 static bool sunxi_core_is_cortex_a15(unsigned int core, unsigned int cluster)
89 {
90         struct device_node *node;
91         int cpu = cluster * SUNXI_CPUS_PER_CLUSTER + core;
92         bool is_compatible;
93
94         node = of_cpu_device_node_get(cpu);
95
96         /* In case of_cpu_device_node_get fails */
97         if (!node)
98                 node = of_get_cpu_node(cpu, NULL);
99
100         if (!node) {
101                 /*
102                  * There's no point in returning an error, since we
103                  * would be mid way in a core or cluster power sequence.
104                  */
105                 pr_err("%s: Couldn't get CPU cluster %u core %u device node\n",
106                        __func__, cluster, core);
107
108                 return false;
109         }
110
111         is_compatible = of_device_is_compatible(node, "arm,cortex-a15");
112         of_node_put(node);
113         return is_compatible;
114 }
115
116 static int sunxi_cpu_power_switch_set(unsigned int cpu, unsigned int cluster,
117                                       bool enable)
118 {
119         u32 reg;
120
121         /* control sequence from Allwinner A80 user manual v1.2 PRCM section */
122         reg = readl(prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
123         if (enable) {
124                 if (reg == 0x00) {
125                         pr_debug("power clamp for cluster %u cpu %u already open\n",
126                                  cluster, cpu);
127                         return 0;
128                 }
129
130                 writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
131                 udelay(10);
132                 writel(0xfe, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
133                 udelay(10);
134                 writel(0xf8, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
135                 udelay(10);
136                 writel(0xf0, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
137                 udelay(10);
138                 writel(0x00, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
139                 udelay(10);
140         } else {
141                 writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
142                 udelay(10);
143         }
144
145         return 0;
146 }
147
148 static void sunxi_cpu0_hotplug_support_set(bool enable)
149 {
150         if (enable) {
151                 writel(CPU0_SUPPORT_HOTPLUG_MAGIC0, sram_b_smp_base);
152                 writel(CPU0_SUPPORT_HOTPLUG_MAGIC1, sram_b_smp_base + 0x4);
153         } else {
154                 writel(0x0, sram_b_smp_base);
155                 writel(0x0, sram_b_smp_base + 0x4);
156         }
157 }
158
159 static int sunxi_cpu_powerup(unsigned int cpu, unsigned int cluster)
160 {
161         u32 reg;
162
163         pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
164         if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS)
165                 return -EINVAL;
166
167         /* Set hotplug support magic flags for cpu0 */
168         if (cluster == 0 && cpu == 0)
169                 sunxi_cpu0_hotplug_support_set(true);
170
171         /* assert processor power-on reset */
172         reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
173         reg &= ~PRCM_CPU_PO_RST_CTRL_CORE(cpu);
174         writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
175
176         if (is_a83t) {
177                 /* assert cpu power-on reset */
178                 reg  = readl(r_cpucfg_base +
179                              R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
180                 reg &= ~(R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu));
181                 writel(reg, r_cpucfg_base +
182                        R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
183                 udelay(10);
184         }
185
186         /* Cortex-A7: hold L1 reset disable signal low */
187         if (!sunxi_core_is_cortex_a15(cpu, cluster)) {
188                 reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
189                 reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(cpu);
190                 writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
191         }
192
193         /* assert processor related resets */
194         reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
195         reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST(cpu);
196
197         /*
198          * Allwinner code also asserts resets for NEON on A15. According
199          * to ARM manuals, asserting power-on reset is sufficient.
200          */
201         if (!sunxi_core_is_cortex_a15(cpu, cluster))
202                 reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST(cpu);
203
204         writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
205
206         /* open power switch */
207         sunxi_cpu_power_switch_set(cpu, cluster, true);
208
209         /* Handle A83T bit swap */
210         if (is_a83t) {
211                 if (cpu == 0)
212                         cpu = 4;
213         }
214
215         /* clear processor power gate */
216         reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
217         reg &= ~PRCM_PWROFF_GATING_REG_CORE(cpu);
218         writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
219         udelay(20);
220
221         /* Handle A83T bit swap */
222         if (is_a83t) {
223                 if (cpu == 4)
224                         cpu = 0;
225         }
226
227         /* de-assert processor power-on reset */
228         reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
229         reg |= PRCM_CPU_PO_RST_CTRL_CORE(cpu);
230         writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
231
232         if (is_a83t) {
233                 reg  = readl(r_cpucfg_base +
234                              R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
235                 reg |= R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu);
236                 writel(reg, r_cpucfg_base +
237                        R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
238                 udelay(10);
239         }
240
241         /* de-assert all processor resets */
242         reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
243         reg |= CPUCFG_CX_RST_CTRL_DBG_RST(cpu);
244         reg |= CPUCFG_CX_RST_CTRL_CORE_RST(cpu);
245         if (!sunxi_core_is_cortex_a15(cpu, cluster))
246                 reg |= CPUCFG_CX_RST_CTRL_ETM_RST(cpu);
247         else
248                 reg |= CPUCFG_CX_RST_CTRL_CX_RST(cpu); /* NEON */
249         writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
250
251         return 0;
252 }
253
254 static int sunxi_cluster_powerup(unsigned int cluster)
255 {
256         u32 reg;
257
258         pr_debug("%s: cluster %u\n", __func__, cluster);
259         if (cluster >= SUNXI_NR_CLUSTERS)
260                 return -EINVAL;
261
262         /* For A83T, assert cluster cores resets */
263         if (is_a83t) {
264                 reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
265                 reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL;   /* Core Reset    */
266                 writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
267                 udelay(10);
268         }
269
270         /* assert ACINACTM */
271         reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
272         reg |= CPUCFG_CX_CTRL_REG1_ACINACTM;
273         writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
274
275         /* assert cluster processor power-on resets */
276         reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
277         reg &= ~PRCM_CPU_PO_RST_CTRL_CORE_ALL;
278         writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
279
280         /* assert cluster cores resets */
281         if (is_a83t) {
282                 reg  = readl(r_cpucfg_base +
283                              R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
284                 reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL;
285                 writel(reg, r_cpucfg_base +
286                        R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
287                 udelay(10);
288         }
289
290         /* assert cluster resets */
291         reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
292         reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
293         reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST_ALL;
294         reg &= ~CPUCFG_CX_RST_CTRL_H_RST;
295         reg &= ~CPUCFG_CX_RST_CTRL_L2_RST;
296
297         /*
298          * Allwinner code also asserts resets for NEON on A15. According
299          * to ARM manuals, asserting power-on reset is sufficient.
300          */
301         if (!sunxi_core_is_cortex_a15(0, cluster))
302                 reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST_ALL;
303
304         writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
305
306         /* hold L1/L2 reset disable signals low */
307         reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
308         if (sunxi_core_is_cortex_a15(0, cluster)) {
309                 /* Cortex-A15: hold L2RSTDISABLE low */
310                 reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15;
311         } else {
312                 /* Cortex-A7: hold L1RSTDISABLE and L2RSTDISABLE low */
313                 reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL;
314                 reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7;
315         }
316         writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
317
318         /* clear cluster power gate */
319         reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
320         if (is_a83t)
321                 reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I;
322         else
323                 reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I;
324         writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
325         udelay(20);
326
327         /* de-assert cluster resets */
328         reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
329         reg |= CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
330         reg |= CPUCFG_CX_RST_CTRL_H_RST;
331         reg |= CPUCFG_CX_RST_CTRL_L2_RST;
332         writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
333
334         /* de-assert ACINACTM */
335         reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
336         reg &= ~CPUCFG_CX_CTRL_REG1_ACINACTM;
337         writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
338
339         return 0;
340 }
341
342 /*
343  * This bit is shared between the initial nocache_trampoline call to
344  * enable CCI-400 and proper cluster cache disable before power down.
345  */
346 static void sunxi_cluster_cache_disable_without_axi(void)
347 {
348         if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
349                 /*
350                  * On the Cortex-A15 we need to disable
351                  * L2 prefetching before flushing the cache.
352                  */
353                 asm volatile(
354                 "mcr    p15, 1, %0, c15, c0, 3\n"
355                 "isb\n"
356                 "dsb"
357                 : : "r" (0x400));
358         }
359
360         /* Flush all cache levels for this cluster. */
361         v7_exit_coherency_flush(all);
362
363         /*
364          * Disable cluster-level coherency by masking
365          * incoming snoops and DVM messages:
366          */
367         cci_disable_port_by_cpu(read_cpuid_mpidr());
368 }
369
370 static int sunxi_mc_smp_cpu_table[SUNXI_NR_CLUSTERS][SUNXI_CPUS_PER_CLUSTER];
371 int sunxi_mc_smp_first_comer;
372
373 static DEFINE_SPINLOCK(boot_lock);
374
375 static bool sunxi_mc_smp_cluster_is_down(unsigned int cluster)
376 {
377         int i;
378
379         for (i = 0; i < SUNXI_CPUS_PER_CLUSTER; i++)
380                 if (sunxi_mc_smp_cpu_table[cluster][i])
381                         return false;
382         return true;
383 }
384
385 static void sunxi_mc_smp_secondary_init(unsigned int cpu)
386 {
387         /* Clear hotplug support magic flags for cpu0 */
388         if (cpu == 0)
389                 sunxi_cpu0_hotplug_support_set(false);
390 }
391
392 static int sunxi_mc_smp_boot_secondary(unsigned int l_cpu, struct task_struct *idle)
393 {
394         unsigned int mpidr, cpu, cluster;
395
396         mpidr = cpu_logical_map(l_cpu);
397         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
398         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
399
400         if (!cpucfg_base)
401                 return -ENODEV;
402         if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER)
403                 return -EINVAL;
404
405         spin_lock_irq(&boot_lock);
406
407         if (sunxi_mc_smp_cpu_table[cluster][cpu])
408                 goto out;
409
410         if (sunxi_mc_smp_cluster_is_down(cluster)) {
411                 sunxi_mc_smp_first_comer = true;
412                 sunxi_cluster_powerup(cluster);
413         } else {
414                 sunxi_mc_smp_first_comer = false;
415         }
416
417         /* This is read by incoming CPUs with their cache and MMU disabled */
418         sync_cache_w(&sunxi_mc_smp_first_comer);
419         sunxi_cpu_powerup(cpu, cluster);
420
421 out:
422         sunxi_mc_smp_cpu_table[cluster][cpu]++;
423         spin_unlock_irq(&boot_lock);
424
425         return 0;
426 }
427
428 #ifdef CONFIG_HOTPLUG_CPU
429 static void sunxi_cluster_cache_disable(void)
430 {
431         unsigned int cluster = MPIDR_AFFINITY_LEVEL(read_cpuid_mpidr(), 1);
432         u32 reg;
433
434         pr_debug("%s: cluster %u\n", __func__, cluster);
435
436         sunxi_cluster_cache_disable_without_axi();
437
438         /* last man standing, assert ACINACTM */
439         reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
440         reg |= CPUCFG_CX_CTRL_REG1_ACINACTM;
441         writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
442 }
443
444 static void sunxi_mc_smp_cpu_die(unsigned int l_cpu)
445 {
446         unsigned int mpidr, cpu, cluster;
447         bool last_man;
448
449         mpidr = cpu_logical_map(l_cpu);
450         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
451         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
452         pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
453
454         spin_lock(&boot_lock);
455         sunxi_mc_smp_cpu_table[cluster][cpu]--;
456         if (sunxi_mc_smp_cpu_table[cluster][cpu] == 1) {
457                 /* A power_up request went ahead of us. */
458                 pr_debug("%s: aborting due to a power up request\n",
459                          __func__);
460                 spin_unlock(&boot_lock);
461                 return;
462         } else if (sunxi_mc_smp_cpu_table[cluster][cpu] > 1) {
463                 pr_err("Cluster %d CPU%d boots multiple times\n",
464                        cluster, cpu);
465                 BUG();
466         }
467
468         last_man = sunxi_mc_smp_cluster_is_down(cluster);
469         spin_unlock(&boot_lock);
470
471         gic_cpu_if_down(0);
472         if (last_man)
473                 sunxi_cluster_cache_disable();
474         else
475                 v7_exit_coherency_flush(louis);
476
477         for (;;)
478                 wfi();
479 }
480
481 static int sunxi_cpu_powerdown(unsigned int cpu, unsigned int cluster)
482 {
483         u32 reg;
484
485         pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
486         if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS)
487                 return -EINVAL;
488
489         /* gate processor power */
490         reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
491         reg |= PRCM_PWROFF_GATING_REG_CORE(cpu);
492         writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
493         udelay(20);
494
495         /* close power switch */
496         sunxi_cpu_power_switch_set(cpu, cluster, false);
497
498         return 0;
499 }
500
501 static int sunxi_cluster_powerdown(unsigned int cluster)
502 {
503         u32 reg;
504
505         pr_debug("%s: cluster %u\n", __func__, cluster);
506         if (cluster >= SUNXI_NR_CLUSTERS)
507                 return -EINVAL;
508
509         /* assert cluster resets or system will hang */
510         pr_debug("%s: assert cluster reset\n", __func__);
511         reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
512         reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
513         reg &= ~CPUCFG_CX_RST_CTRL_H_RST;
514         reg &= ~CPUCFG_CX_RST_CTRL_L2_RST;
515         writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
516
517         /* gate cluster power */
518         pr_debug("%s: gate cluster power\n", __func__);
519         reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
520         if (is_a83t)
521                 reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I;
522         else
523                 reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I;
524         writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
525         udelay(20);
526
527         return 0;
528 }
529
530 static int sunxi_mc_smp_cpu_kill(unsigned int l_cpu)
531 {
532         unsigned int mpidr, cpu, cluster;
533         unsigned int tries, count;
534         int ret = 0;
535         u32 reg;
536
537         mpidr = cpu_logical_map(l_cpu);
538         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
539         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
540
541         /* This should never happen */
542         if (WARN_ON(cluster >= SUNXI_NR_CLUSTERS ||
543                     cpu >= SUNXI_CPUS_PER_CLUSTER))
544                 return 0;
545
546         /* wait for CPU core to die and enter WFI */
547         count = TIMEOUT_USEC / POLL_USEC;
548         spin_lock_irq(&boot_lock);
549         for (tries = 0; tries < count; tries++) {
550                 spin_unlock_irq(&boot_lock);
551                 usleep_range(POLL_USEC / 2, POLL_USEC);
552                 spin_lock_irq(&boot_lock);
553
554                 /*
555                  * If the user turns off a bunch of cores at the same
556                  * time, the kernel might call cpu_kill before some of
557                  * them are ready. This is because boot_lock serializes
558                  * both cpu_die and cpu_kill callbacks. Either one could
559                  * run first. We should wait for cpu_die to complete.
560                  */
561                 if (sunxi_mc_smp_cpu_table[cluster][cpu])
562                         continue;
563
564                 reg = readl(cpucfg_base + CPUCFG_CX_STATUS(cluster));
565                 if (reg & CPUCFG_CX_STATUS_STANDBYWFI(cpu))
566                         break;
567         }
568
569         if (tries >= count) {
570                 ret = ETIMEDOUT;
571                 goto out;
572         }
573
574         /* power down CPU core */
575         sunxi_cpu_powerdown(cpu, cluster);
576
577         if (!sunxi_mc_smp_cluster_is_down(cluster))
578                 goto out;
579
580         /* wait for cluster L2 WFI */
581         ret = readl_poll_timeout(cpucfg_base + CPUCFG_CX_STATUS(cluster), reg,
582                                  reg & CPUCFG_CX_STATUS_STANDBYWFIL2,
583                                  POLL_USEC, TIMEOUT_USEC);
584         if (ret) {
585                 /*
586                  * Ignore timeout on the cluster. Leaving the cluster on
587                  * will not affect system execution, just use a bit more
588                  * power. But returning an error here will only confuse
589                  * the user as the CPU has already been shutdown.
590                  */
591                 ret = 0;
592                 goto out;
593         }
594
595         /* Power down cluster */
596         sunxi_cluster_powerdown(cluster);
597
598 out:
599         spin_unlock_irq(&boot_lock);
600         pr_debug("%s: cluster %u cpu %u powerdown: %d\n",
601                  __func__, cluster, cpu, ret);
602         return !ret;
603 }
604
605 static bool sunxi_mc_smp_cpu_can_disable(unsigned int cpu)
606 {
607         /* CPU0 hotplug not handled for sun8i-a83t */
608         if (is_a83t)
609                 if (cpu == 0)
610                         return false;
611         return true;
612 }
613 #endif
614
615 static const struct smp_operations sunxi_mc_smp_smp_ops __initconst = {
616         .smp_secondary_init     = sunxi_mc_smp_secondary_init,
617         .smp_boot_secondary     = sunxi_mc_smp_boot_secondary,
618 #ifdef CONFIG_HOTPLUG_CPU
619         .cpu_die                = sunxi_mc_smp_cpu_die,
620         .cpu_kill               = sunxi_mc_smp_cpu_kill,
621         .cpu_can_disable        = sunxi_mc_smp_cpu_can_disable,
622 #endif
623 };
624
625 static bool __init sunxi_mc_smp_cpu_table_init(void)
626 {
627         unsigned int mpidr, cpu, cluster;
628
629         mpidr = read_cpuid_mpidr();
630         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
631         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
632
633         if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER) {
634                 pr_err("%s: boot CPU is out of bounds!\n", __func__);
635                 return false;
636         }
637         sunxi_mc_smp_cpu_table[cluster][cpu] = 1;
638         return true;
639 }
640
641 /*
642  * Adapted from arch/arm/common/mc_smp_entry.c
643  *
644  * We need the trampoline code to enable CCI-400 on the first cluster
645  */
646 typedef typeof(cpu_reset) phys_reset_t;
647
648 static int __init nocache_trampoline(unsigned long __unused)
649 {
650         phys_reset_t phys_reset;
651
652         setup_mm_for_reboot();
653         sunxi_cluster_cache_disable_without_axi();
654
655         phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
656         phys_reset(__pa_symbol(sunxi_mc_smp_resume), false);
657         BUG();
658 }
659
660 static int __init sunxi_mc_smp_loopback(void)
661 {
662         int ret;
663
664         /*
665          * We're going to soft-restart the current CPU through the
666          * low-level MCPM code by leveraging the suspend/resume
667          * infrastructure. Let's play it safe by using cpu_pm_enter()
668          * in case the CPU init code path resets the VFP or similar.
669          */
670         sunxi_mc_smp_first_comer = true;
671         local_irq_disable();
672         local_fiq_disable();
673         ret = cpu_pm_enter();
674         if (!ret) {
675                 ret = cpu_suspend(0, nocache_trampoline);
676                 cpu_pm_exit();
677         }
678         local_fiq_enable();
679         local_irq_enable();
680         sunxi_mc_smp_first_comer = false;
681
682         return ret;
683 }
684
685 /*
686  * This holds any device nodes that we requested resources for,
687  * so that we may easily release resources in the error path.
688  */
689 struct sunxi_mc_smp_nodes {
690         struct device_node *prcm_node;
691         struct device_node *cpucfg_node;
692         struct device_node *sram_node;
693         struct device_node *r_cpucfg_node;
694 };
695
696 /* This structure holds SoC-specific bits tied to an enable-method string. */
697 struct sunxi_mc_smp_data {
698         const char *enable_method;
699         int (*get_smp_nodes)(struct sunxi_mc_smp_nodes *nodes);
700         bool is_a83t;
701 };
702
703 static void __init sunxi_mc_smp_put_nodes(struct sunxi_mc_smp_nodes *nodes)
704 {
705         of_node_put(nodes->prcm_node);
706         of_node_put(nodes->cpucfg_node);
707         of_node_put(nodes->sram_node);
708         of_node_put(nodes->r_cpucfg_node);
709         memset(nodes, 0, sizeof(*nodes));
710 }
711
712 static int __init sun9i_a80_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes)
713 {
714         nodes->prcm_node = of_find_compatible_node(NULL, NULL,
715                                                    "allwinner,sun9i-a80-prcm");
716         if (!nodes->prcm_node) {
717                 pr_err("%s: PRCM not available\n", __func__);
718                 return -ENODEV;
719         }
720
721         nodes->cpucfg_node = of_find_compatible_node(NULL, NULL,
722                                                      "allwinner,sun9i-a80-cpucfg");
723         if (!nodes->cpucfg_node) {
724                 pr_err("%s: CPUCFG not available\n", __func__);
725                 return -ENODEV;
726         }
727
728         nodes->sram_node = of_find_compatible_node(NULL, NULL,
729                                                    "allwinner,sun9i-a80-smp-sram");
730         if (!nodes->sram_node) {
731                 pr_err("%s: Secure SRAM not available\n", __func__);
732                 return -ENODEV;
733         }
734
735         return 0;
736 }
737
738 static int __init sun8i_a83t_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes)
739 {
740         nodes->prcm_node = of_find_compatible_node(NULL, NULL,
741                                                    "allwinner,sun8i-a83t-r-ccu");
742         if (!nodes->prcm_node) {
743                 pr_err("%s: PRCM not available\n", __func__);
744                 return -ENODEV;
745         }
746
747         nodes->cpucfg_node = of_find_compatible_node(NULL, NULL,
748                                                      "allwinner,sun8i-a83t-cpucfg");
749         if (!nodes->cpucfg_node) {
750                 pr_err("%s: CPUCFG not available\n", __func__);
751                 return -ENODEV;
752         }
753
754         nodes->r_cpucfg_node = of_find_compatible_node(NULL, NULL,
755                                                        "allwinner,sun8i-a83t-r-cpucfg");
756         if (!nodes->r_cpucfg_node) {
757                 pr_err("%s: RCPUCFG not available\n", __func__);
758                 return -ENODEV;
759         }
760
761         return 0;
762 }
763
764 static const struct sunxi_mc_smp_data sunxi_mc_smp_data[] __initconst = {
765         {
766                 .enable_method  = "allwinner,sun9i-a80-smp",
767                 .get_smp_nodes  = sun9i_a80_get_smp_nodes,
768         },
769         {
770                 .enable_method  = "allwinner,sun8i-a83t-smp",
771                 .get_smp_nodes  = sun8i_a83t_get_smp_nodes,
772                 .is_a83t        = true,
773         },
774 };
775
776 static int __init sunxi_mc_smp_init(void)
777 {
778         struct sunxi_mc_smp_nodes nodes = { 0 };
779         struct device_node *node;
780         struct resource res;
781         void __iomem *addr;
782         int i, ret;
783
784         /*
785          * Don't bother checking the "cpus" node, as an enable-method
786          * property in that node is undocumented.
787          */
788         node = of_cpu_device_node_get(0);
789         if (!node)
790                 return -ENODEV;
791
792         /*
793          * We can't actually use the enable-method magic in the kernel.
794          * Our loopback / trampoline code uses the CPU suspend framework,
795          * which requires the identity mapping be available. It would not
796          * yet be available if we used the .init_cpus or .prepare_cpus
797          * callbacks in smp_operations, which we would use if we were to
798          * use CPU_METHOD_OF_DECLARE
799          */
800         for (i = 0; i < ARRAY_SIZE(sunxi_mc_smp_data); i++) {
801                 ret = of_property_match_string(node, "enable-method",
802                                                sunxi_mc_smp_data[i].enable_method);
803                 if (!ret)
804                         break;
805         }
806
807         is_a83t = sunxi_mc_smp_data[i].is_a83t;
808
809         of_node_put(node);
810         if (ret)
811                 return -ENODEV;
812
813         if (!sunxi_mc_smp_cpu_table_init())
814                 return -EINVAL;
815
816         if (!cci_probed()) {
817                 pr_err("%s: CCI-400 not available\n", __func__);
818                 return -ENODEV;
819         }
820
821         /* Get needed device tree nodes */
822         ret = sunxi_mc_smp_data[i].get_smp_nodes(&nodes);
823         if (ret)
824                 goto err_put_nodes;
825
826         /*
827          * Unfortunately we can not request the I/O region for the PRCM.
828          * It is shared with the PRCM clock.
829          */
830         prcm_base = of_iomap(nodes.prcm_node, 0);
831         if (!prcm_base) {
832                 pr_err("%s: failed to map PRCM registers\n", __func__);
833                 ret = -ENOMEM;
834                 goto err_put_nodes;
835         }
836
837         cpucfg_base = of_io_request_and_map(nodes.cpucfg_node, 0,
838                                             "sunxi-mc-smp");
839         if (IS_ERR(cpucfg_base)) {
840                 ret = PTR_ERR(cpucfg_base);
841                 pr_err("%s: failed to map CPUCFG registers: %d\n",
842                        __func__, ret);
843                 goto err_unmap_prcm;
844         }
845
846         if (is_a83t) {
847                 r_cpucfg_base = of_io_request_and_map(nodes.r_cpucfg_node,
848                                                       0, "sunxi-mc-smp");
849                 if (IS_ERR(r_cpucfg_base)) {
850                         ret = PTR_ERR(r_cpucfg_base);
851                         pr_err("%s: failed to map R-CPUCFG registers\n",
852                                __func__);
853                         goto err_unmap_release_cpucfg;
854                 }
855         } else {
856                 sram_b_smp_base = of_io_request_and_map(nodes.sram_node, 0,
857                                                         "sunxi-mc-smp");
858                 if (IS_ERR(sram_b_smp_base)) {
859                         ret = PTR_ERR(sram_b_smp_base);
860                         pr_err("%s: failed to map secure SRAM\n", __func__);
861                         goto err_unmap_release_cpucfg;
862                 }
863         }
864
865         /* Configure CCI-400 for boot cluster */
866         ret = sunxi_mc_smp_loopback();
867         if (ret) {
868                 pr_err("%s: failed to configure boot cluster: %d\n",
869                        __func__, ret);
870                 goto err_unmap_release_sram_rcpucfg;
871         }
872
873         /* We don't need the device nodes anymore */
874         sunxi_mc_smp_put_nodes(&nodes);
875
876         /* Set the hardware entry point address */
877         if (is_a83t)
878                 addr = r_cpucfg_base + R_CPUCFG_CPU_SOFT_ENTRY_REG;
879         else
880                 addr = prcm_base + PRCM_CPU_SOFT_ENTRY_REG;
881         writel(__pa_symbol(sunxi_mc_smp_secondary_startup), addr);
882
883         /* Actually enable multi cluster SMP */
884         smp_set_ops(&sunxi_mc_smp_smp_ops);
885
886         pr_info("sunxi multi cluster SMP support installed\n");
887
888         return 0;
889
890 err_unmap_release_sram_rcpucfg:
891         if (is_a83t) {
892                 iounmap(r_cpucfg_base);
893                 of_address_to_resource(nodes.r_cpucfg_node, 0, &res);
894         } else {
895                 iounmap(sram_b_smp_base);
896                 of_address_to_resource(nodes.sram_node, 0, &res);
897         }
898         release_mem_region(res.start, resource_size(&res));
899 err_unmap_release_cpucfg:
900         iounmap(cpucfg_base);
901         of_address_to_resource(nodes.cpucfg_node, 0, &res);
902         release_mem_region(res.start, resource_size(&res));
903 err_unmap_prcm:
904         iounmap(prcm_base);
905 err_put_nodes:
906         sunxi_mc_smp_put_nodes(&nodes);
907         return ret;
908 }
909
910 early_initcall(sunxi_mc_smp_init);