KVM: set_memory_region: Refactor prepare_memory_region()
[linux-2.6-microblaze.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/errno.h>
20 #include <linux/err.h>
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/vmalloc.h>
24 #include <linux/fs.h>
25 #include <linux/mman.h>
26 #include <linux/sched.h>
27 #include <linux/kvm.h>
28 #include <trace/events/kvm.h>
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #include <asm/unified.h>
34 #include <asm/uaccess.h>
35 #include <asm/ptrace.h>
36 #include <asm/mman.h>
37 #include <asm/cputype.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 #include <asm/opcodes.h>
48
49 #ifdef REQUIRES_VIRT
50 __asm__(".arch_extension        virt");
51 #endif
52
53 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 static struct vfp_hard_struct __percpu *kvm_host_vfp_state;
55 static unsigned long hyp_default_vectors;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u8 kvm_next_vmid;
63 static DEFINE_SPINLOCK(kvm_vmid_lock);
64
65 static bool vgic_present;
66
67 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
68 {
69         BUG_ON(preemptible());
70         __get_cpu_var(kvm_arm_running_vcpu) = vcpu;
71 }
72
73 /**
74  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
75  * Must be called from non-preemptible context
76  */
77 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
78 {
79         BUG_ON(preemptible());
80         return __get_cpu_var(kvm_arm_running_vcpu);
81 }
82
83 /**
84  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
85  */
86 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
87 {
88         return &kvm_arm_running_vcpu;
89 }
90
91 int kvm_arch_hardware_enable(void *garbage)
92 {
93         return 0;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 void kvm_arch_hardware_disable(void *garbage)
102 {
103 }
104
105 int kvm_arch_hardware_setup(void)
106 {
107         return 0;
108 }
109
110 void kvm_arch_hardware_unsetup(void)
111 {
112 }
113
114 void kvm_arch_check_processor_compat(void *rtn)
115 {
116         *(int *)rtn = 0;
117 }
118
119 void kvm_arch_sync_events(struct kvm *kvm)
120 {
121 }
122
123 /**
124  * kvm_arch_init_vm - initializes a VM data structure
125  * @kvm:        pointer to the KVM struct
126  */
127 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
128 {
129         int ret = 0;
130
131         if (type)
132                 return -EINVAL;
133
134         ret = kvm_alloc_stage2_pgd(kvm);
135         if (ret)
136                 goto out_fail_alloc;
137
138         ret = create_hyp_mappings(kvm, kvm + 1);
139         if (ret)
140                 goto out_free_stage2_pgd;
141
142         /* Mark the initial VMID generation invalid */
143         kvm->arch.vmid_gen = 0;
144
145         return ret;
146 out_free_stage2_pgd:
147         kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149         return ret;
150 }
151
152 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153 {
154         return VM_FAULT_SIGBUS;
155 }
156
157 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
158                            struct kvm_memory_slot *dont)
159 {
160 }
161
162 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
163 {
164         return 0;
165 }
166
167 /**
168  * kvm_arch_destroy_vm - destroy the VM data structure
169  * @kvm:        pointer to the KVM struct
170  */
171 void kvm_arch_destroy_vm(struct kvm *kvm)
172 {
173         int i;
174
175         kvm_free_stage2_pgd(kvm);
176
177         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
178                 if (kvm->vcpus[i]) {
179                         kvm_arch_vcpu_free(kvm->vcpus[i]);
180                         kvm->vcpus[i] = NULL;
181                 }
182         }
183 }
184
185 int kvm_dev_ioctl_check_extension(long ext)
186 {
187         int r;
188         switch (ext) {
189         case KVM_CAP_IRQCHIP:
190                 r = vgic_present;
191                 break;
192         case KVM_CAP_USER_MEMORY:
193         case KVM_CAP_SYNC_MMU:
194         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
195         case KVM_CAP_ONE_REG:
196         case KVM_CAP_ARM_PSCI:
197                 r = 1;
198                 break;
199         case KVM_CAP_COALESCED_MMIO:
200                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
201                 break;
202         case KVM_CAP_ARM_SET_DEVICE_ADDR:
203                 r = 1;
204         case KVM_CAP_NR_VCPUS:
205                 r = num_online_cpus();
206                 break;
207         case KVM_CAP_MAX_VCPUS:
208                 r = KVM_MAX_VCPUS;
209                 break;
210         default:
211                 r = 0;
212                 break;
213         }
214         return r;
215 }
216
217 long kvm_arch_dev_ioctl(struct file *filp,
218                         unsigned int ioctl, unsigned long arg)
219 {
220         return -EINVAL;
221 }
222
223 int kvm_arch_set_memory_region(struct kvm *kvm,
224                                struct kvm_userspace_memory_region *mem,
225                                struct kvm_memory_slot old,
226                                int user_alloc)
227 {
228         return 0;
229 }
230
231 int kvm_arch_prepare_memory_region(struct kvm *kvm,
232                                    struct kvm_memory_slot *memslot,
233                                    struct kvm_userspace_memory_region *mem,
234                                    enum kvm_mr_change change)
235 {
236         return 0;
237 }
238
239 void kvm_arch_commit_memory_region(struct kvm *kvm,
240                                    struct kvm_userspace_memory_region *mem,
241                                    struct kvm_memory_slot old)
242 {
243 }
244
245 void kvm_arch_flush_shadow_all(struct kvm *kvm)
246 {
247 }
248
249 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
250                                    struct kvm_memory_slot *slot)
251 {
252 }
253
254 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
255 {
256         int err;
257         struct kvm_vcpu *vcpu;
258
259         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
260         if (!vcpu) {
261                 err = -ENOMEM;
262                 goto out;
263         }
264
265         err = kvm_vcpu_init(vcpu, kvm, id);
266         if (err)
267                 goto free_vcpu;
268
269         err = create_hyp_mappings(vcpu, vcpu + 1);
270         if (err)
271                 goto vcpu_uninit;
272
273         return vcpu;
274 vcpu_uninit:
275         kvm_vcpu_uninit(vcpu);
276 free_vcpu:
277         kmem_cache_free(kvm_vcpu_cache, vcpu);
278 out:
279         return ERR_PTR(err);
280 }
281
282 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
283 {
284         return 0;
285 }
286
287 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
288 {
289         kvm_mmu_free_memory_caches(vcpu);
290         kvm_timer_vcpu_terminate(vcpu);
291         kmem_cache_free(kvm_vcpu_cache, vcpu);
292 }
293
294 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
295 {
296         kvm_arch_vcpu_free(vcpu);
297 }
298
299 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
300 {
301         return 0;
302 }
303
304 int __attribute_const__ kvm_target_cpu(void)
305 {
306         unsigned long implementor = read_cpuid_implementor();
307         unsigned long part_number = read_cpuid_part_number();
308
309         if (implementor != ARM_CPU_IMP_ARM)
310                 return -EINVAL;
311
312         switch (part_number) {
313         case ARM_CPU_PART_CORTEX_A15:
314                 return KVM_ARM_TARGET_CORTEX_A15;
315         default:
316                 return -EINVAL;
317         }
318 }
319
320 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
321 {
322         int ret;
323
324         /* Force users to call KVM_ARM_VCPU_INIT */
325         vcpu->arch.target = -1;
326
327         /* Set up VGIC */
328         ret = kvm_vgic_vcpu_init(vcpu);
329         if (ret)
330                 return ret;
331
332         /* Set up the timer */
333         kvm_timer_vcpu_init(vcpu);
334
335         return 0;
336 }
337
338 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
339 {
340 }
341
342 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
343 {
344         vcpu->cpu = cpu;
345         vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state);
346
347         /*
348          * Check whether this vcpu requires the cache to be flushed on
349          * this physical CPU. This is a consequence of doing dcache
350          * operations by set/way on this vcpu. We do it here to be in
351          * a non-preemptible section.
352          */
353         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
354                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
355
356         kvm_arm_set_running_vcpu(vcpu);
357 }
358
359 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
360 {
361         kvm_arm_set_running_vcpu(NULL);
362 }
363
364 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
365                                         struct kvm_guest_debug *dbg)
366 {
367         return -EINVAL;
368 }
369
370
371 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
372                                     struct kvm_mp_state *mp_state)
373 {
374         return -EINVAL;
375 }
376
377 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
378                                     struct kvm_mp_state *mp_state)
379 {
380         return -EINVAL;
381 }
382
383 /**
384  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
385  * @v:          The VCPU pointer
386  *
387  * If the guest CPU is not waiting for interrupts or an interrupt line is
388  * asserted, the CPU is by definition runnable.
389  */
390 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
391 {
392         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
393 }
394
395 /* Just ensure a guest exit from a particular CPU */
396 static void exit_vm_noop(void *info)
397 {
398 }
399
400 void force_vm_exit(const cpumask_t *mask)
401 {
402         smp_call_function_many(mask, exit_vm_noop, NULL, true);
403 }
404
405 /**
406  * need_new_vmid_gen - check that the VMID is still valid
407  * @kvm: The VM's VMID to checkt
408  *
409  * return true if there is a new generation of VMIDs being used
410  *
411  * The hardware supports only 256 values with the value zero reserved for the
412  * host, so we check if an assigned value belongs to a previous generation,
413  * which which requires us to assign a new value. If we're the first to use a
414  * VMID for the new generation, we must flush necessary caches and TLBs on all
415  * CPUs.
416  */
417 static bool need_new_vmid_gen(struct kvm *kvm)
418 {
419         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
420 }
421
422 /**
423  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
424  * @kvm The guest that we are about to run
425  *
426  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
427  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
428  * caches and TLBs.
429  */
430 static void update_vttbr(struct kvm *kvm)
431 {
432         phys_addr_t pgd_phys;
433         u64 vmid;
434
435         if (!need_new_vmid_gen(kvm))
436                 return;
437
438         spin_lock(&kvm_vmid_lock);
439
440         /*
441          * We need to re-check the vmid_gen here to ensure that if another vcpu
442          * already allocated a valid vmid for this vm, then this vcpu should
443          * use the same vmid.
444          */
445         if (!need_new_vmid_gen(kvm)) {
446                 spin_unlock(&kvm_vmid_lock);
447                 return;
448         }
449
450         /* First user of a new VMID generation? */
451         if (unlikely(kvm_next_vmid == 0)) {
452                 atomic64_inc(&kvm_vmid_gen);
453                 kvm_next_vmid = 1;
454
455                 /*
456                  * On SMP we know no other CPUs can use this CPU's or each
457                  * other's VMID after force_vm_exit returns since the
458                  * kvm_vmid_lock blocks them from reentry to the guest.
459                  */
460                 force_vm_exit(cpu_all_mask);
461                 /*
462                  * Now broadcast TLB + ICACHE invalidation over the inner
463                  * shareable domain to make sure all data structures are
464                  * clean.
465                  */
466                 kvm_call_hyp(__kvm_flush_vm_context);
467         }
468
469         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
470         kvm->arch.vmid = kvm_next_vmid;
471         kvm_next_vmid++;
472
473         /* update vttbr to be used with the new vmid */
474         pgd_phys = virt_to_phys(kvm->arch.pgd);
475         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
476         kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
477         kvm->arch.vttbr |= vmid;
478
479         spin_unlock(&kvm_vmid_lock);
480 }
481
482 static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
483 {
484         /* SVC called from Hyp mode should never get here */
485         kvm_debug("SVC called from Hyp mode shouldn't go here\n");
486         BUG();
487         return -EINVAL; /* Squash warning */
488 }
489
490 static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
491 {
492         trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0),
493                       vcpu->arch.hsr & HSR_HVC_IMM_MASK);
494
495         if (kvm_psci_call(vcpu))
496                 return 1;
497
498         kvm_inject_undefined(vcpu);
499         return 1;
500 }
501
502 static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
503 {
504         if (kvm_psci_call(vcpu))
505                 return 1;
506
507         kvm_inject_undefined(vcpu);
508         return 1;
509 }
510
511 static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
512 {
513         /* The hypervisor should never cause aborts */
514         kvm_err("Prefetch Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
515                 vcpu->arch.hxfar, vcpu->arch.hsr);
516         return -EFAULT;
517 }
518
519 static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
520 {
521         /* This is either an error in the ws. code or an external abort */
522         kvm_err("Data Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
523                 vcpu->arch.hxfar, vcpu->arch.hsr);
524         return -EFAULT;
525 }
526
527 typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
528 static exit_handle_fn arm_exit_handlers[] = {
529         [HSR_EC_WFI]            = kvm_handle_wfi,
530         [HSR_EC_CP15_32]        = kvm_handle_cp15_32,
531         [HSR_EC_CP15_64]        = kvm_handle_cp15_64,
532         [HSR_EC_CP14_MR]        = kvm_handle_cp14_access,
533         [HSR_EC_CP14_LS]        = kvm_handle_cp14_load_store,
534         [HSR_EC_CP14_64]        = kvm_handle_cp14_access,
535         [HSR_EC_CP_0_13]        = kvm_handle_cp_0_13_access,
536         [HSR_EC_CP10_ID]        = kvm_handle_cp10_id,
537         [HSR_EC_SVC_HYP]        = handle_svc_hyp,
538         [HSR_EC_HVC]            = handle_hvc,
539         [HSR_EC_SMC]            = handle_smc,
540         [HSR_EC_IABT]           = kvm_handle_guest_abort,
541         [HSR_EC_IABT_HYP]       = handle_pabt_hyp,
542         [HSR_EC_DABT]           = kvm_handle_guest_abort,
543         [HSR_EC_DABT_HYP]       = handle_dabt_hyp,
544 };
545
546 /*
547  * A conditional instruction is allowed to trap, even though it
548  * wouldn't be executed.  So let's re-implement the hardware, in
549  * software!
550  */
551 static bool kvm_condition_valid(struct kvm_vcpu *vcpu)
552 {
553         unsigned long cpsr, cond, insn;
554
555         /*
556          * Exception Code 0 can only happen if we set HCR.TGE to 1, to
557          * catch undefined instructions, and then we won't get past
558          * the arm_exit_handlers test anyway.
559          */
560         BUG_ON(((vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT) == 0);
561
562         /* Top two bits non-zero?  Unconditional. */
563         if (vcpu->arch.hsr >> 30)
564                 return true;
565
566         cpsr = *vcpu_cpsr(vcpu);
567
568         /* Is condition field valid? */
569         if ((vcpu->arch.hsr & HSR_CV) >> HSR_CV_SHIFT)
570                 cond = (vcpu->arch.hsr & HSR_COND) >> HSR_COND_SHIFT;
571         else {
572                 /* This can happen in Thumb mode: examine IT state. */
573                 unsigned long it;
574
575                 it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3);
576
577                 /* it == 0 => unconditional. */
578                 if (it == 0)
579                         return true;
580
581                 /* The cond for this insn works out as the top 4 bits. */
582                 cond = (it >> 4);
583         }
584
585         /* Shift makes it look like an ARM-mode instruction */
586         insn = cond << 28;
587         return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL;
588 }
589
590 /*
591  * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
592  * proper exit to QEMU.
593  */
594 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
595                        int exception_index)
596 {
597         unsigned long hsr_ec;
598
599         switch (exception_index) {
600         case ARM_EXCEPTION_IRQ:
601                 return 1;
602         case ARM_EXCEPTION_UNDEFINED:
603                 kvm_err("Undefined exception in Hyp mode at: %#08x\n",
604                         vcpu->arch.hyp_pc);
605                 BUG();
606                 panic("KVM: Hypervisor undefined exception!\n");
607         case ARM_EXCEPTION_DATA_ABORT:
608         case ARM_EXCEPTION_PREF_ABORT:
609         case ARM_EXCEPTION_HVC:
610                 hsr_ec = (vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT;
611
612                 if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers)
613                     || !arm_exit_handlers[hsr_ec]) {
614                         kvm_err("Unkown exception class: %#08lx, "
615                                 "hsr: %#08x\n", hsr_ec,
616                                 (unsigned int)vcpu->arch.hsr);
617                         BUG();
618                 }
619
620                 /*
621                  * See ARM ARM B1.14.1: "Hyp traps on instructions
622                  * that fail their condition code check"
623                  */
624                 if (!kvm_condition_valid(vcpu)) {
625                         bool is_wide = vcpu->arch.hsr & HSR_IL;
626                         kvm_skip_instr(vcpu, is_wide);
627                         return 1;
628                 }
629
630                 return arm_exit_handlers[hsr_ec](vcpu, run);
631         default:
632                 kvm_pr_unimpl("Unsupported exception type: %d",
633                               exception_index);
634                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
635                 return 0;
636         }
637 }
638
639 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
640 {
641         if (likely(vcpu->arch.has_run_once))
642                 return 0;
643
644         vcpu->arch.has_run_once = true;
645
646         /*
647          * Initialize the VGIC before running a vcpu the first time on
648          * this VM.
649          */
650         if (irqchip_in_kernel(vcpu->kvm) &&
651             unlikely(!vgic_initialized(vcpu->kvm))) {
652                 int ret = kvm_vgic_init(vcpu->kvm);
653                 if (ret)
654                         return ret;
655         }
656
657         /*
658          * Handle the "start in power-off" case by calling into the
659          * PSCI code.
660          */
661         if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
662                 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
663                 kvm_psci_call(vcpu);
664         }
665
666         return 0;
667 }
668
669 static void vcpu_pause(struct kvm_vcpu *vcpu)
670 {
671         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
672
673         wait_event_interruptible(*wq, !vcpu->arch.pause);
674 }
675
676 /**
677  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
678  * @vcpu:       The VCPU pointer
679  * @run:        The kvm_run structure pointer used for userspace state exchange
680  *
681  * This function is called through the VCPU_RUN ioctl called from user space. It
682  * will execute VM code in a loop until the time slice for the process is used
683  * or some emulation is needed from user space in which case the function will
684  * return with return value 0 and with the kvm_run structure filled in with the
685  * required data for the requested emulation.
686  */
687 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
688 {
689         int ret;
690         sigset_t sigsaved;
691
692         /* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */
693         if (unlikely(vcpu->arch.target < 0))
694                 return -ENOEXEC;
695
696         ret = kvm_vcpu_first_run_init(vcpu);
697         if (ret)
698                 return ret;
699
700         if (run->exit_reason == KVM_EXIT_MMIO) {
701                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
702                 if (ret)
703                         return ret;
704         }
705
706         if (vcpu->sigset_active)
707                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
708
709         ret = 1;
710         run->exit_reason = KVM_EXIT_UNKNOWN;
711         while (ret > 0) {
712                 /*
713                  * Check conditions before entering the guest
714                  */
715                 cond_resched();
716
717                 update_vttbr(vcpu->kvm);
718
719                 if (vcpu->arch.pause)
720                         vcpu_pause(vcpu);
721
722                 kvm_vgic_flush_hwstate(vcpu);
723                 kvm_timer_flush_hwstate(vcpu);
724
725                 local_irq_disable();
726
727                 /*
728                  * Re-check atomic conditions
729                  */
730                 if (signal_pending(current)) {
731                         ret = -EINTR;
732                         run->exit_reason = KVM_EXIT_INTR;
733                 }
734
735                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
736                         local_irq_enable();
737                         kvm_timer_sync_hwstate(vcpu);
738                         kvm_vgic_sync_hwstate(vcpu);
739                         continue;
740                 }
741
742                 /**************************************************************
743                  * Enter the guest
744                  */
745                 trace_kvm_entry(*vcpu_pc(vcpu));
746                 kvm_guest_enter();
747                 vcpu->mode = IN_GUEST_MODE;
748
749                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
750
751                 vcpu->mode = OUTSIDE_GUEST_MODE;
752                 vcpu->arch.last_pcpu = smp_processor_id();
753                 kvm_guest_exit();
754                 trace_kvm_exit(*vcpu_pc(vcpu));
755                 /*
756                  * We may have taken a host interrupt in HYP mode (ie
757                  * while executing the guest). This interrupt is still
758                  * pending, as we haven't serviced it yet!
759                  *
760                  * We're now back in SVC mode, with interrupts
761                  * disabled.  Enabling the interrupts now will have
762                  * the effect of taking the interrupt again, in SVC
763                  * mode this time.
764                  */
765                 local_irq_enable();
766
767                 /*
768                  * Back from guest
769                  *************************************************************/
770
771                 kvm_timer_sync_hwstate(vcpu);
772                 kvm_vgic_sync_hwstate(vcpu);
773
774                 ret = handle_exit(vcpu, run, ret);
775         }
776
777         if (vcpu->sigset_active)
778                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
779         return ret;
780 }
781
782 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
783 {
784         int bit_index;
785         bool set;
786         unsigned long *ptr;
787
788         if (number == KVM_ARM_IRQ_CPU_IRQ)
789                 bit_index = __ffs(HCR_VI);
790         else /* KVM_ARM_IRQ_CPU_FIQ */
791                 bit_index = __ffs(HCR_VF);
792
793         ptr = (unsigned long *)&vcpu->arch.irq_lines;
794         if (level)
795                 set = test_and_set_bit(bit_index, ptr);
796         else
797                 set = test_and_clear_bit(bit_index, ptr);
798
799         /*
800          * If we didn't change anything, no need to wake up or kick other CPUs
801          */
802         if (set == level)
803                 return 0;
804
805         /*
806          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
807          * trigger a world-switch round on the running physical CPU to set the
808          * virtual IRQ/FIQ fields in the HCR appropriately.
809          */
810         kvm_vcpu_kick(vcpu);
811
812         return 0;
813 }
814
815 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level)
816 {
817         u32 irq = irq_level->irq;
818         unsigned int irq_type, vcpu_idx, irq_num;
819         int nrcpus = atomic_read(&kvm->online_vcpus);
820         struct kvm_vcpu *vcpu = NULL;
821         bool level = irq_level->level;
822
823         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
824         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
825         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
826
827         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
828
829         switch (irq_type) {
830         case KVM_ARM_IRQ_TYPE_CPU:
831                 if (irqchip_in_kernel(kvm))
832                         return -ENXIO;
833
834                 if (vcpu_idx >= nrcpus)
835                         return -EINVAL;
836
837                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
838                 if (!vcpu)
839                         return -EINVAL;
840
841                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
842                         return -EINVAL;
843
844                 return vcpu_interrupt_line(vcpu, irq_num, level);
845         case KVM_ARM_IRQ_TYPE_PPI:
846                 if (!irqchip_in_kernel(kvm))
847                         return -ENXIO;
848
849                 if (vcpu_idx >= nrcpus)
850                         return -EINVAL;
851
852                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
853                 if (!vcpu)
854                         return -EINVAL;
855
856                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
857                         return -EINVAL;
858
859                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
860         case KVM_ARM_IRQ_TYPE_SPI:
861                 if (!irqchip_in_kernel(kvm))
862                         return -ENXIO;
863
864                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
865                     irq_num > KVM_ARM_IRQ_GIC_MAX)
866                         return -EINVAL;
867
868                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
869         }
870
871         return -EINVAL;
872 }
873
874 long kvm_arch_vcpu_ioctl(struct file *filp,
875                          unsigned int ioctl, unsigned long arg)
876 {
877         struct kvm_vcpu *vcpu = filp->private_data;
878         void __user *argp = (void __user *)arg;
879
880         switch (ioctl) {
881         case KVM_ARM_VCPU_INIT: {
882                 struct kvm_vcpu_init init;
883
884                 if (copy_from_user(&init, argp, sizeof(init)))
885                         return -EFAULT;
886
887                 return kvm_vcpu_set_target(vcpu, &init);
888
889         }
890         case KVM_SET_ONE_REG:
891         case KVM_GET_ONE_REG: {
892                 struct kvm_one_reg reg;
893                 if (copy_from_user(&reg, argp, sizeof(reg)))
894                         return -EFAULT;
895                 if (ioctl == KVM_SET_ONE_REG)
896                         return kvm_arm_set_reg(vcpu, &reg);
897                 else
898                         return kvm_arm_get_reg(vcpu, &reg);
899         }
900         case KVM_GET_REG_LIST: {
901                 struct kvm_reg_list __user *user_list = argp;
902                 struct kvm_reg_list reg_list;
903                 unsigned n;
904
905                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
906                         return -EFAULT;
907                 n = reg_list.n;
908                 reg_list.n = kvm_arm_num_regs(vcpu);
909                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
910                         return -EFAULT;
911                 if (n < reg_list.n)
912                         return -E2BIG;
913                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
914         }
915         default:
916                 return -EINVAL;
917         }
918 }
919
920 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
921 {
922         return -EINVAL;
923 }
924
925 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
926                                         struct kvm_arm_device_addr *dev_addr)
927 {
928         unsigned long dev_id, type;
929
930         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
931                 KVM_ARM_DEVICE_ID_SHIFT;
932         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
933                 KVM_ARM_DEVICE_TYPE_SHIFT;
934
935         switch (dev_id) {
936         case KVM_ARM_DEVICE_VGIC_V2:
937                 if (!vgic_present)
938                         return -ENXIO;
939                 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
940         default:
941                 return -ENODEV;
942         }
943 }
944
945 long kvm_arch_vm_ioctl(struct file *filp,
946                        unsigned int ioctl, unsigned long arg)
947 {
948         struct kvm *kvm = filp->private_data;
949         void __user *argp = (void __user *)arg;
950
951         switch (ioctl) {
952         case KVM_CREATE_IRQCHIP: {
953                 if (vgic_present)
954                         return kvm_vgic_create(kvm);
955                 else
956                         return -ENXIO;
957         }
958         case KVM_ARM_SET_DEVICE_ADDR: {
959                 struct kvm_arm_device_addr dev_addr;
960
961                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
962                         return -EFAULT;
963                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
964         }
965         default:
966                 return -EINVAL;
967         }
968 }
969
970 static void cpu_init_hyp_mode(void *vector)
971 {
972         unsigned long long pgd_ptr;
973         unsigned long pgd_low, pgd_high;
974         unsigned long hyp_stack_ptr;
975         unsigned long stack_page;
976         unsigned long vector_ptr;
977
978         /* Switch from the HYP stub to our own HYP init vector */
979         __hyp_set_vectors((unsigned long)vector);
980
981         pgd_ptr = (unsigned long long)kvm_mmu_get_httbr();
982         pgd_low = (pgd_ptr & ((1ULL << 32) - 1));
983         pgd_high = (pgd_ptr >> 32ULL);
984         stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
985         hyp_stack_ptr = stack_page + PAGE_SIZE;
986         vector_ptr = (unsigned long)__kvm_hyp_vector;
987
988         /*
989          * Call initialization code, and switch to the full blown
990          * HYP code. The init code doesn't need to preserve these registers as
991          * r1-r3 and r12 are already callee save according to the AAPCS.
992          * Note that we slightly misuse the prototype by casing the pgd_low to
993          * a void *.
994          */
995         kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr);
996 }
997
998 /**
999  * Inits Hyp-mode on all online CPUs
1000  */
1001 static int init_hyp_mode(void)
1002 {
1003         phys_addr_t init_phys_addr;
1004         int cpu;
1005         int err = 0;
1006
1007         /*
1008          * Allocate Hyp PGD and setup Hyp identity mapping
1009          */
1010         err = kvm_mmu_init();
1011         if (err)
1012                 goto out_err;
1013
1014         /*
1015          * It is probably enough to obtain the default on one
1016          * CPU. It's unlikely to be different on the others.
1017          */
1018         hyp_default_vectors = __hyp_get_vectors();
1019
1020         /*
1021          * Allocate stack pages for Hypervisor-mode
1022          */
1023         for_each_possible_cpu(cpu) {
1024                 unsigned long stack_page;
1025
1026                 stack_page = __get_free_page(GFP_KERNEL);
1027                 if (!stack_page) {
1028                         err = -ENOMEM;
1029                         goto out_free_stack_pages;
1030                 }
1031
1032                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1033         }
1034
1035         /*
1036          * Execute the init code on each CPU.
1037          *
1038          * Note: The stack is not mapped yet, so don't do anything else than
1039          * initializing the hypervisor mode on each CPU using a local stack
1040          * space for temporary storage.
1041          */
1042         init_phys_addr = virt_to_phys(__kvm_hyp_init);
1043         for_each_online_cpu(cpu) {
1044                 smp_call_function_single(cpu, cpu_init_hyp_mode,
1045                                          (void *)(long)init_phys_addr, 1);
1046         }
1047
1048         /*
1049          * Unmap the identity mapping
1050          */
1051         kvm_clear_hyp_idmap();
1052
1053         /*
1054          * Map the Hyp-code called directly from the host
1055          */
1056         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1057         if (err) {
1058                 kvm_err("Cannot map world-switch code\n");
1059                 goto out_free_mappings;
1060         }
1061
1062         /*
1063          * Map the Hyp stack pages
1064          */
1065         for_each_possible_cpu(cpu) {
1066                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1067                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1068
1069                 if (err) {
1070                         kvm_err("Cannot map hyp stack\n");
1071                         goto out_free_mappings;
1072                 }
1073         }
1074
1075         /*
1076          * Map the host VFP structures
1077          */
1078         kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct);
1079         if (!kvm_host_vfp_state) {
1080                 err = -ENOMEM;
1081                 kvm_err("Cannot allocate host VFP state\n");
1082                 goto out_free_mappings;
1083         }
1084
1085         for_each_possible_cpu(cpu) {
1086                 struct vfp_hard_struct *vfp;
1087
1088                 vfp = per_cpu_ptr(kvm_host_vfp_state, cpu);
1089                 err = create_hyp_mappings(vfp, vfp + 1);
1090
1091                 if (err) {
1092                         kvm_err("Cannot map host VFP state: %d\n", err);
1093                         goto out_free_vfp;
1094                 }
1095         }
1096
1097         /*
1098          * Init HYP view of VGIC
1099          */
1100         err = kvm_vgic_hyp_init();
1101         if (err)
1102                 goto out_free_vfp;
1103
1104 #ifdef CONFIG_KVM_ARM_VGIC
1105                 vgic_present = true;
1106 #endif
1107
1108         /*
1109          * Init HYP architected timer support
1110          */
1111         err = kvm_timer_hyp_init();
1112         if (err)
1113                 goto out_free_mappings;
1114
1115         kvm_info("Hyp mode initialized successfully\n");
1116         return 0;
1117 out_free_vfp:
1118         free_percpu(kvm_host_vfp_state);
1119 out_free_mappings:
1120         free_hyp_pmds();
1121 out_free_stack_pages:
1122         for_each_possible_cpu(cpu)
1123                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1124 out_err:
1125         kvm_err("error initializing Hyp mode: %d\n", err);
1126         return err;
1127 }
1128
1129 /**
1130  * Initialize Hyp-mode and memory mappings on all CPUs.
1131  */
1132 int kvm_arch_init(void *opaque)
1133 {
1134         int err;
1135
1136         if (!is_hyp_mode_available()) {
1137                 kvm_err("HYP mode not available\n");
1138                 return -ENODEV;
1139         }
1140
1141         if (kvm_target_cpu() < 0) {
1142                 kvm_err("Target CPU not supported!\n");
1143                 return -ENODEV;
1144         }
1145
1146         err = init_hyp_mode();
1147         if (err)
1148                 goto out_err;
1149
1150         kvm_coproc_table_init();
1151         return 0;
1152 out_err:
1153         return err;
1154 }
1155
1156 /* NOP: Compiling as a module not supported */
1157 void kvm_arch_exit(void)
1158 {
1159 }
1160
1161 static int arm_init(void)
1162 {
1163         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1164         return rc;
1165 }
1166
1167 module_init(arm_init);