5a936988eb24d1e62e5ae248ff6e4a3db59667b9
[linux-2.6-microblaze.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/errno.h>
20 #include <linux/err.h>
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/vmalloc.h>
24 #include <linux/fs.h>
25 #include <linux/mman.h>
26 #include <linux/sched.h>
27 #include <linux/kvm.h>
28 #include <trace/events/kvm.h>
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #include <asm/unified.h>
34 #include <asm/uaccess.h>
35 #include <asm/ptrace.h>
36 #include <asm/mman.h>
37 #include <asm/cputype.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 #include <asm/opcodes.h>
48
49 #ifdef REQUIRES_VIRT
50 __asm__(".arch_extension        virt");
51 #endif
52
53 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 static struct vfp_hard_struct __percpu *kvm_host_vfp_state;
55 static unsigned long hyp_default_vectors;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u8 kvm_next_vmid;
63 static DEFINE_SPINLOCK(kvm_vmid_lock);
64
65 static bool vgic_present;
66
67 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
68 {
69         BUG_ON(preemptible());
70         __get_cpu_var(kvm_arm_running_vcpu) = vcpu;
71 }
72
73 /**
74  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
75  * Must be called from non-preemptible context
76  */
77 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
78 {
79         BUG_ON(preemptible());
80         return __get_cpu_var(kvm_arm_running_vcpu);
81 }
82
83 /**
84  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
85  */
86 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
87 {
88         return &kvm_arm_running_vcpu;
89 }
90
91 int kvm_arch_hardware_enable(void *garbage)
92 {
93         return 0;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 void kvm_arch_hardware_disable(void *garbage)
102 {
103 }
104
105 int kvm_arch_hardware_setup(void)
106 {
107         return 0;
108 }
109
110 void kvm_arch_hardware_unsetup(void)
111 {
112 }
113
114 void kvm_arch_check_processor_compat(void *rtn)
115 {
116         *(int *)rtn = 0;
117 }
118
119 void kvm_arch_sync_events(struct kvm *kvm)
120 {
121 }
122
123 /**
124  * kvm_arch_init_vm - initializes a VM data structure
125  * @kvm:        pointer to the KVM struct
126  */
127 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
128 {
129         int ret = 0;
130
131         if (type)
132                 return -EINVAL;
133
134         ret = kvm_alloc_stage2_pgd(kvm);
135         if (ret)
136                 goto out_fail_alloc;
137
138         ret = create_hyp_mappings(kvm, kvm + 1);
139         if (ret)
140                 goto out_free_stage2_pgd;
141
142         /* Mark the initial VMID generation invalid */
143         kvm->arch.vmid_gen = 0;
144
145         return ret;
146 out_free_stage2_pgd:
147         kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149         return ret;
150 }
151
152 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153 {
154         return VM_FAULT_SIGBUS;
155 }
156
157 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
158                            struct kvm_memory_slot *dont)
159 {
160 }
161
162 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
163 {
164         return 0;
165 }
166
167 /**
168  * kvm_arch_destroy_vm - destroy the VM data structure
169  * @kvm:        pointer to the KVM struct
170  */
171 void kvm_arch_destroy_vm(struct kvm *kvm)
172 {
173         int i;
174
175         kvm_free_stage2_pgd(kvm);
176
177         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
178                 if (kvm->vcpus[i]) {
179                         kvm_arch_vcpu_free(kvm->vcpus[i]);
180                         kvm->vcpus[i] = NULL;
181                 }
182         }
183 }
184
185 int kvm_dev_ioctl_check_extension(long ext)
186 {
187         int r;
188         switch (ext) {
189         case KVM_CAP_IRQCHIP:
190                 r = vgic_present;
191                 break;
192         case KVM_CAP_USER_MEMORY:
193         case KVM_CAP_SYNC_MMU:
194         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
195         case KVM_CAP_ONE_REG:
196         case KVM_CAP_ARM_PSCI:
197                 r = 1;
198                 break;
199         case KVM_CAP_COALESCED_MMIO:
200                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
201                 break;
202         case KVM_CAP_ARM_SET_DEVICE_ADDR:
203                 r = 1;
204         case KVM_CAP_NR_VCPUS:
205                 r = num_online_cpus();
206                 break;
207         case KVM_CAP_MAX_VCPUS:
208                 r = KVM_MAX_VCPUS;
209                 break;
210         default:
211                 r = 0;
212                 break;
213         }
214         return r;
215 }
216
217 long kvm_arch_dev_ioctl(struct file *filp,
218                         unsigned int ioctl, unsigned long arg)
219 {
220         return -EINVAL;
221 }
222
223 int kvm_arch_set_memory_region(struct kvm *kvm,
224                                struct kvm_userspace_memory_region *mem,
225                                struct kvm_memory_slot old,
226                                int user_alloc)
227 {
228         return 0;
229 }
230
231 int kvm_arch_prepare_memory_region(struct kvm *kvm,
232                                    struct kvm_memory_slot *memslot,
233                                    struct kvm_memory_slot old,
234                                    struct kvm_userspace_memory_region *mem,
235                                    bool user_alloc)
236 {
237         return 0;
238 }
239
240 void kvm_arch_commit_memory_region(struct kvm *kvm,
241                                    struct kvm_userspace_memory_region *mem,
242                                    struct kvm_memory_slot old,
243                                    bool user_alloc)
244 {
245 }
246
247 void kvm_arch_flush_shadow_all(struct kvm *kvm)
248 {
249 }
250
251 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
252                                    struct kvm_memory_slot *slot)
253 {
254 }
255
256 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
257 {
258         int err;
259         struct kvm_vcpu *vcpu;
260
261         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
262         if (!vcpu) {
263                 err = -ENOMEM;
264                 goto out;
265         }
266
267         err = kvm_vcpu_init(vcpu, kvm, id);
268         if (err)
269                 goto free_vcpu;
270
271         err = create_hyp_mappings(vcpu, vcpu + 1);
272         if (err)
273                 goto vcpu_uninit;
274
275         return vcpu;
276 vcpu_uninit:
277         kvm_vcpu_uninit(vcpu);
278 free_vcpu:
279         kmem_cache_free(kvm_vcpu_cache, vcpu);
280 out:
281         return ERR_PTR(err);
282 }
283
284 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
285 {
286         return 0;
287 }
288
289 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
290 {
291         kvm_mmu_free_memory_caches(vcpu);
292         kvm_timer_vcpu_terminate(vcpu);
293         kmem_cache_free(kvm_vcpu_cache, vcpu);
294 }
295
296 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
297 {
298         kvm_arch_vcpu_free(vcpu);
299 }
300
301 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
302 {
303         return 0;
304 }
305
306 int __attribute_const__ kvm_target_cpu(void)
307 {
308         unsigned long implementor = read_cpuid_implementor();
309         unsigned long part_number = read_cpuid_part_number();
310
311         if (implementor != ARM_CPU_IMP_ARM)
312                 return -EINVAL;
313
314         switch (part_number) {
315         case ARM_CPU_PART_CORTEX_A15:
316                 return KVM_ARM_TARGET_CORTEX_A15;
317         default:
318                 return -EINVAL;
319         }
320 }
321
322 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
323 {
324         int ret;
325
326         /* Force users to call KVM_ARM_VCPU_INIT */
327         vcpu->arch.target = -1;
328
329         /* Set up VGIC */
330         ret = kvm_vgic_vcpu_init(vcpu);
331         if (ret)
332                 return ret;
333
334         /* Set up the timer */
335         kvm_timer_vcpu_init(vcpu);
336
337         return 0;
338 }
339
340 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
341 {
342 }
343
344 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
345 {
346         vcpu->cpu = cpu;
347         vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state);
348
349         /*
350          * Check whether this vcpu requires the cache to be flushed on
351          * this physical CPU. This is a consequence of doing dcache
352          * operations by set/way on this vcpu. We do it here to be in
353          * a non-preemptible section.
354          */
355         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
356                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
357
358         kvm_arm_set_running_vcpu(vcpu);
359 }
360
361 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
362 {
363         kvm_arm_set_running_vcpu(NULL);
364 }
365
366 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
367                                         struct kvm_guest_debug *dbg)
368 {
369         return -EINVAL;
370 }
371
372
373 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
374                                     struct kvm_mp_state *mp_state)
375 {
376         return -EINVAL;
377 }
378
379 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
380                                     struct kvm_mp_state *mp_state)
381 {
382         return -EINVAL;
383 }
384
385 /**
386  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
387  * @v:          The VCPU pointer
388  *
389  * If the guest CPU is not waiting for interrupts or an interrupt line is
390  * asserted, the CPU is by definition runnable.
391  */
392 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
393 {
394         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
395 }
396
397 /* Just ensure a guest exit from a particular CPU */
398 static void exit_vm_noop(void *info)
399 {
400 }
401
402 void force_vm_exit(const cpumask_t *mask)
403 {
404         smp_call_function_many(mask, exit_vm_noop, NULL, true);
405 }
406
407 /**
408  * need_new_vmid_gen - check that the VMID is still valid
409  * @kvm: The VM's VMID to checkt
410  *
411  * return true if there is a new generation of VMIDs being used
412  *
413  * The hardware supports only 256 values with the value zero reserved for the
414  * host, so we check if an assigned value belongs to a previous generation,
415  * which which requires us to assign a new value. If we're the first to use a
416  * VMID for the new generation, we must flush necessary caches and TLBs on all
417  * CPUs.
418  */
419 static bool need_new_vmid_gen(struct kvm *kvm)
420 {
421         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
422 }
423
424 /**
425  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
426  * @kvm The guest that we are about to run
427  *
428  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
429  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
430  * caches and TLBs.
431  */
432 static void update_vttbr(struct kvm *kvm)
433 {
434         phys_addr_t pgd_phys;
435         u64 vmid;
436
437         if (!need_new_vmid_gen(kvm))
438                 return;
439
440         spin_lock(&kvm_vmid_lock);
441
442         /*
443          * We need to re-check the vmid_gen here to ensure that if another vcpu
444          * already allocated a valid vmid for this vm, then this vcpu should
445          * use the same vmid.
446          */
447         if (!need_new_vmid_gen(kvm)) {
448                 spin_unlock(&kvm_vmid_lock);
449                 return;
450         }
451
452         /* First user of a new VMID generation? */
453         if (unlikely(kvm_next_vmid == 0)) {
454                 atomic64_inc(&kvm_vmid_gen);
455                 kvm_next_vmid = 1;
456
457                 /*
458                  * On SMP we know no other CPUs can use this CPU's or each
459                  * other's VMID after force_vm_exit returns since the
460                  * kvm_vmid_lock blocks them from reentry to the guest.
461                  */
462                 force_vm_exit(cpu_all_mask);
463                 /*
464                  * Now broadcast TLB + ICACHE invalidation over the inner
465                  * shareable domain to make sure all data structures are
466                  * clean.
467                  */
468                 kvm_call_hyp(__kvm_flush_vm_context);
469         }
470
471         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
472         kvm->arch.vmid = kvm_next_vmid;
473         kvm_next_vmid++;
474
475         /* update vttbr to be used with the new vmid */
476         pgd_phys = virt_to_phys(kvm->arch.pgd);
477         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
478         kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
479         kvm->arch.vttbr |= vmid;
480
481         spin_unlock(&kvm_vmid_lock);
482 }
483
484 static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
485 {
486         /* SVC called from Hyp mode should never get here */
487         kvm_debug("SVC called from Hyp mode shouldn't go here\n");
488         BUG();
489         return -EINVAL; /* Squash warning */
490 }
491
492 static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
493 {
494         trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0),
495                       vcpu->arch.hsr & HSR_HVC_IMM_MASK);
496
497         if (kvm_psci_call(vcpu))
498                 return 1;
499
500         kvm_inject_undefined(vcpu);
501         return 1;
502 }
503
504 static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
505 {
506         if (kvm_psci_call(vcpu))
507                 return 1;
508
509         kvm_inject_undefined(vcpu);
510         return 1;
511 }
512
513 static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
514 {
515         /* The hypervisor should never cause aborts */
516         kvm_err("Prefetch Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
517                 vcpu->arch.hxfar, vcpu->arch.hsr);
518         return -EFAULT;
519 }
520
521 static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
522 {
523         /* This is either an error in the ws. code or an external abort */
524         kvm_err("Data Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
525                 vcpu->arch.hxfar, vcpu->arch.hsr);
526         return -EFAULT;
527 }
528
529 typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
530 static exit_handle_fn arm_exit_handlers[] = {
531         [HSR_EC_WFI]            = kvm_handle_wfi,
532         [HSR_EC_CP15_32]        = kvm_handle_cp15_32,
533         [HSR_EC_CP15_64]        = kvm_handle_cp15_64,
534         [HSR_EC_CP14_MR]        = kvm_handle_cp14_access,
535         [HSR_EC_CP14_LS]        = kvm_handle_cp14_load_store,
536         [HSR_EC_CP14_64]        = kvm_handle_cp14_access,
537         [HSR_EC_CP_0_13]        = kvm_handle_cp_0_13_access,
538         [HSR_EC_CP10_ID]        = kvm_handle_cp10_id,
539         [HSR_EC_SVC_HYP]        = handle_svc_hyp,
540         [HSR_EC_HVC]            = handle_hvc,
541         [HSR_EC_SMC]            = handle_smc,
542         [HSR_EC_IABT]           = kvm_handle_guest_abort,
543         [HSR_EC_IABT_HYP]       = handle_pabt_hyp,
544         [HSR_EC_DABT]           = kvm_handle_guest_abort,
545         [HSR_EC_DABT_HYP]       = handle_dabt_hyp,
546 };
547
548 /*
549  * A conditional instruction is allowed to trap, even though it
550  * wouldn't be executed.  So let's re-implement the hardware, in
551  * software!
552  */
553 static bool kvm_condition_valid(struct kvm_vcpu *vcpu)
554 {
555         unsigned long cpsr, cond, insn;
556
557         /*
558          * Exception Code 0 can only happen if we set HCR.TGE to 1, to
559          * catch undefined instructions, and then we won't get past
560          * the arm_exit_handlers test anyway.
561          */
562         BUG_ON(((vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT) == 0);
563
564         /* Top two bits non-zero?  Unconditional. */
565         if (vcpu->arch.hsr >> 30)
566                 return true;
567
568         cpsr = *vcpu_cpsr(vcpu);
569
570         /* Is condition field valid? */
571         if ((vcpu->arch.hsr & HSR_CV) >> HSR_CV_SHIFT)
572                 cond = (vcpu->arch.hsr & HSR_COND) >> HSR_COND_SHIFT;
573         else {
574                 /* This can happen in Thumb mode: examine IT state. */
575                 unsigned long it;
576
577                 it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3);
578
579                 /* it == 0 => unconditional. */
580                 if (it == 0)
581                         return true;
582
583                 /* The cond for this insn works out as the top 4 bits. */
584                 cond = (it >> 4);
585         }
586
587         /* Shift makes it look like an ARM-mode instruction */
588         insn = cond << 28;
589         return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL;
590 }
591
592 /*
593  * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
594  * proper exit to QEMU.
595  */
596 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
597                        int exception_index)
598 {
599         unsigned long hsr_ec;
600
601         switch (exception_index) {
602         case ARM_EXCEPTION_IRQ:
603                 return 1;
604         case ARM_EXCEPTION_UNDEFINED:
605                 kvm_err("Undefined exception in Hyp mode at: %#08x\n",
606                         vcpu->arch.hyp_pc);
607                 BUG();
608                 panic("KVM: Hypervisor undefined exception!\n");
609         case ARM_EXCEPTION_DATA_ABORT:
610         case ARM_EXCEPTION_PREF_ABORT:
611         case ARM_EXCEPTION_HVC:
612                 hsr_ec = (vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT;
613
614                 if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers)
615                     || !arm_exit_handlers[hsr_ec]) {
616                         kvm_err("Unkown exception class: %#08lx, "
617                                 "hsr: %#08x\n", hsr_ec,
618                                 (unsigned int)vcpu->arch.hsr);
619                         BUG();
620                 }
621
622                 /*
623                  * See ARM ARM B1.14.1: "Hyp traps on instructions
624                  * that fail their condition code check"
625                  */
626                 if (!kvm_condition_valid(vcpu)) {
627                         bool is_wide = vcpu->arch.hsr & HSR_IL;
628                         kvm_skip_instr(vcpu, is_wide);
629                         return 1;
630                 }
631
632                 return arm_exit_handlers[hsr_ec](vcpu, run);
633         default:
634                 kvm_pr_unimpl("Unsupported exception type: %d",
635                               exception_index);
636                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
637                 return 0;
638         }
639 }
640
641 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
642 {
643         if (likely(vcpu->arch.has_run_once))
644                 return 0;
645
646         vcpu->arch.has_run_once = true;
647
648         /*
649          * Initialize the VGIC before running a vcpu the first time on
650          * this VM.
651          */
652         if (irqchip_in_kernel(vcpu->kvm) &&
653             unlikely(!vgic_initialized(vcpu->kvm))) {
654                 int ret = kvm_vgic_init(vcpu->kvm);
655                 if (ret)
656                         return ret;
657         }
658
659         /*
660          * Handle the "start in power-off" case by calling into the
661          * PSCI code.
662          */
663         if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
664                 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
665                 kvm_psci_call(vcpu);
666         }
667
668         return 0;
669 }
670
671 static void vcpu_pause(struct kvm_vcpu *vcpu)
672 {
673         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
674
675         wait_event_interruptible(*wq, !vcpu->arch.pause);
676 }
677
678 /**
679  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
680  * @vcpu:       The VCPU pointer
681  * @run:        The kvm_run structure pointer used for userspace state exchange
682  *
683  * This function is called through the VCPU_RUN ioctl called from user space. It
684  * will execute VM code in a loop until the time slice for the process is used
685  * or some emulation is needed from user space in which case the function will
686  * return with return value 0 and with the kvm_run structure filled in with the
687  * required data for the requested emulation.
688  */
689 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
690 {
691         int ret;
692         sigset_t sigsaved;
693
694         /* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */
695         if (unlikely(vcpu->arch.target < 0))
696                 return -ENOEXEC;
697
698         ret = kvm_vcpu_first_run_init(vcpu);
699         if (ret)
700                 return ret;
701
702         if (run->exit_reason == KVM_EXIT_MMIO) {
703                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
704                 if (ret)
705                         return ret;
706         }
707
708         if (vcpu->sigset_active)
709                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
710
711         ret = 1;
712         run->exit_reason = KVM_EXIT_UNKNOWN;
713         while (ret > 0) {
714                 /*
715                  * Check conditions before entering the guest
716                  */
717                 cond_resched();
718
719                 update_vttbr(vcpu->kvm);
720
721                 if (vcpu->arch.pause)
722                         vcpu_pause(vcpu);
723
724                 kvm_vgic_flush_hwstate(vcpu);
725                 kvm_timer_flush_hwstate(vcpu);
726
727                 local_irq_disable();
728
729                 /*
730                  * Re-check atomic conditions
731                  */
732                 if (signal_pending(current)) {
733                         ret = -EINTR;
734                         run->exit_reason = KVM_EXIT_INTR;
735                 }
736
737                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
738                         local_irq_enable();
739                         kvm_timer_sync_hwstate(vcpu);
740                         kvm_vgic_sync_hwstate(vcpu);
741                         continue;
742                 }
743
744                 /**************************************************************
745                  * Enter the guest
746                  */
747                 trace_kvm_entry(*vcpu_pc(vcpu));
748                 kvm_guest_enter();
749                 vcpu->mode = IN_GUEST_MODE;
750
751                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
752
753                 vcpu->mode = OUTSIDE_GUEST_MODE;
754                 vcpu->arch.last_pcpu = smp_processor_id();
755                 kvm_guest_exit();
756                 trace_kvm_exit(*vcpu_pc(vcpu));
757                 /*
758                  * We may have taken a host interrupt in HYP mode (ie
759                  * while executing the guest). This interrupt is still
760                  * pending, as we haven't serviced it yet!
761                  *
762                  * We're now back in SVC mode, with interrupts
763                  * disabled.  Enabling the interrupts now will have
764                  * the effect of taking the interrupt again, in SVC
765                  * mode this time.
766                  */
767                 local_irq_enable();
768
769                 /*
770                  * Back from guest
771                  *************************************************************/
772
773                 kvm_timer_sync_hwstate(vcpu);
774                 kvm_vgic_sync_hwstate(vcpu);
775
776                 ret = handle_exit(vcpu, run, ret);
777         }
778
779         if (vcpu->sigset_active)
780                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
781         return ret;
782 }
783
784 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
785 {
786         int bit_index;
787         bool set;
788         unsigned long *ptr;
789
790         if (number == KVM_ARM_IRQ_CPU_IRQ)
791                 bit_index = __ffs(HCR_VI);
792         else /* KVM_ARM_IRQ_CPU_FIQ */
793                 bit_index = __ffs(HCR_VF);
794
795         ptr = (unsigned long *)&vcpu->arch.irq_lines;
796         if (level)
797                 set = test_and_set_bit(bit_index, ptr);
798         else
799                 set = test_and_clear_bit(bit_index, ptr);
800
801         /*
802          * If we didn't change anything, no need to wake up or kick other CPUs
803          */
804         if (set == level)
805                 return 0;
806
807         /*
808          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
809          * trigger a world-switch round on the running physical CPU to set the
810          * virtual IRQ/FIQ fields in the HCR appropriately.
811          */
812         kvm_vcpu_kick(vcpu);
813
814         return 0;
815 }
816
817 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level)
818 {
819         u32 irq = irq_level->irq;
820         unsigned int irq_type, vcpu_idx, irq_num;
821         int nrcpus = atomic_read(&kvm->online_vcpus);
822         struct kvm_vcpu *vcpu = NULL;
823         bool level = irq_level->level;
824
825         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
826         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
827         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
828
829         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
830
831         switch (irq_type) {
832         case KVM_ARM_IRQ_TYPE_CPU:
833                 if (irqchip_in_kernel(kvm))
834                         return -ENXIO;
835
836                 if (vcpu_idx >= nrcpus)
837                         return -EINVAL;
838
839                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
840                 if (!vcpu)
841                         return -EINVAL;
842
843                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
844                         return -EINVAL;
845
846                 return vcpu_interrupt_line(vcpu, irq_num, level);
847         case KVM_ARM_IRQ_TYPE_PPI:
848                 if (!irqchip_in_kernel(kvm))
849                         return -ENXIO;
850
851                 if (vcpu_idx >= nrcpus)
852                         return -EINVAL;
853
854                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
855                 if (!vcpu)
856                         return -EINVAL;
857
858                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
859                         return -EINVAL;
860
861                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
862         case KVM_ARM_IRQ_TYPE_SPI:
863                 if (!irqchip_in_kernel(kvm))
864                         return -ENXIO;
865
866                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
867                     irq_num > KVM_ARM_IRQ_GIC_MAX)
868                         return -EINVAL;
869
870                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
871         }
872
873         return -EINVAL;
874 }
875
876 long kvm_arch_vcpu_ioctl(struct file *filp,
877                          unsigned int ioctl, unsigned long arg)
878 {
879         struct kvm_vcpu *vcpu = filp->private_data;
880         void __user *argp = (void __user *)arg;
881
882         switch (ioctl) {
883         case KVM_ARM_VCPU_INIT: {
884                 struct kvm_vcpu_init init;
885
886                 if (copy_from_user(&init, argp, sizeof(init)))
887                         return -EFAULT;
888
889                 return kvm_vcpu_set_target(vcpu, &init);
890
891         }
892         case KVM_SET_ONE_REG:
893         case KVM_GET_ONE_REG: {
894                 struct kvm_one_reg reg;
895                 if (copy_from_user(&reg, argp, sizeof(reg)))
896                         return -EFAULT;
897                 if (ioctl == KVM_SET_ONE_REG)
898                         return kvm_arm_set_reg(vcpu, &reg);
899                 else
900                         return kvm_arm_get_reg(vcpu, &reg);
901         }
902         case KVM_GET_REG_LIST: {
903                 struct kvm_reg_list __user *user_list = argp;
904                 struct kvm_reg_list reg_list;
905                 unsigned n;
906
907                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
908                         return -EFAULT;
909                 n = reg_list.n;
910                 reg_list.n = kvm_arm_num_regs(vcpu);
911                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
912                         return -EFAULT;
913                 if (n < reg_list.n)
914                         return -E2BIG;
915                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
916         }
917         default:
918                 return -EINVAL;
919         }
920 }
921
922 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
923 {
924         return -EINVAL;
925 }
926
927 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
928                                         struct kvm_arm_device_addr *dev_addr)
929 {
930         unsigned long dev_id, type;
931
932         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
933                 KVM_ARM_DEVICE_ID_SHIFT;
934         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
935                 KVM_ARM_DEVICE_TYPE_SHIFT;
936
937         switch (dev_id) {
938         case KVM_ARM_DEVICE_VGIC_V2:
939                 if (!vgic_present)
940                         return -ENXIO;
941                 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
942         default:
943                 return -ENODEV;
944         }
945 }
946
947 long kvm_arch_vm_ioctl(struct file *filp,
948                        unsigned int ioctl, unsigned long arg)
949 {
950         struct kvm *kvm = filp->private_data;
951         void __user *argp = (void __user *)arg;
952
953         switch (ioctl) {
954         case KVM_CREATE_IRQCHIP: {
955                 if (vgic_present)
956                         return kvm_vgic_create(kvm);
957                 else
958                         return -ENXIO;
959         }
960         case KVM_ARM_SET_DEVICE_ADDR: {
961                 struct kvm_arm_device_addr dev_addr;
962
963                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
964                         return -EFAULT;
965                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
966         }
967         default:
968                 return -EINVAL;
969         }
970 }
971
972 static void cpu_init_hyp_mode(void *vector)
973 {
974         unsigned long long pgd_ptr;
975         unsigned long pgd_low, pgd_high;
976         unsigned long hyp_stack_ptr;
977         unsigned long stack_page;
978         unsigned long vector_ptr;
979
980         /* Switch from the HYP stub to our own HYP init vector */
981         __hyp_set_vectors((unsigned long)vector);
982
983         pgd_ptr = (unsigned long long)kvm_mmu_get_httbr();
984         pgd_low = (pgd_ptr & ((1ULL << 32) - 1));
985         pgd_high = (pgd_ptr >> 32ULL);
986         stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
987         hyp_stack_ptr = stack_page + PAGE_SIZE;
988         vector_ptr = (unsigned long)__kvm_hyp_vector;
989
990         /*
991          * Call initialization code, and switch to the full blown
992          * HYP code. The init code doesn't need to preserve these registers as
993          * r1-r3 and r12 are already callee save according to the AAPCS.
994          * Note that we slightly misuse the prototype by casing the pgd_low to
995          * a void *.
996          */
997         kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr);
998 }
999
1000 /**
1001  * Inits Hyp-mode on all online CPUs
1002  */
1003 static int init_hyp_mode(void)
1004 {
1005         phys_addr_t init_phys_addr;
1006         int cpu;
1007         int err = 0;
1008
1009         /*
1010          * Allocate Hyp PGD and setup Hyp identity mapping
1011          */
1012         err = kvm_mmu_init();
1013         if (err)
1014                 goto out_err;
1015
1016         /*
1017          * It is probably enough to obtain the default on one
1018          * CPU. It's unlikely to be different on the others.
1019          */
1020         hyp_default_vectors = __hyp_get_vectors();
1021
1022         /*
1023          * Allocate stack pages for Hypervisor-mode
1024          */
1025         for_each_possible_cpu(cpu) {
1026                 unsigned long stack_page;
1027
1028                 stack_page = __get_free_page(GFP_KERNEL);
1029                 if (!stack_page) {
1030                         err = -ENOMEM;
1031                         goto out_free_stack_pages;
1032                 }
1033
1034                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1035         }
1036
1037         /*
1038          * Execute the init code on each CPU.
1039          *
1040          * Note: The stack is not mapped yet, so don't do anything else than
1041          * initializing the hypervisor mode on each CPU using a local stack
1042          * space for temporary storage.
1043          */
1044         init_phys_addr = virt_to_phys(__kvm_hyp_init);
1045         for_each_online_cpu(cpu) {
1046                 smp_call_function_single(cpu, cpu_init_hyp_mode,
1047                                          (void *)(long)init_phys_addr, 1);
1048         }
1049
1050         /*
1051          * Unmap the identity mapping
1052          */
1053         kvm_clear_hyp_idmap();
1054
1055         /*
1056          * Map the Hyp-code called directly from the host
1057          */
1058         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1059         if (err) {
1060                 kvm_err("Cannot map world-switch code\n");
1061                 goto out_free_mappings;
1062         }
1063
1064         /*
1065          * Map the Hyp stack pages
1066          */
1067         for_each_possible_cpu(cpu) {
1068                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1069                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1070
1071                 if (err) {
1072                         kvm_err("Cannot map hyp stack\n");
1073                         goto out_free_mappings;
1074                 }
1075         }
1076
1077         /*
1078          * Map the host VFP structures
1079          */
1080         kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct);
1081         if (!kvm_host_vfp_state) {
1082                 err = -ENOMEM;
1083                 kvm_err("Cannot allocate host VFP state\n");
1084                 goto out_free_mappings;
1085         }
1086
1087         for_each_possible_cpu(cpu) {
1088                 struct vfp_hard_struct *vfp;
1089
1090                 vfp = per_cpu_ptr(kvm_host_vfp_state, cpu);
1091                 err = create_hyp_mappings(vfp, vfp + 1);
1092
1093                 if (err) {
1094                         kvm_err("Cannot map host VFP state: %d\n", err);
1095                         goto out_free_vfp;
1096                 }
1097         }
1098
1099         /*
1100          * Init HYP view of VGIC
1101          */
1102         err = kvm_vgic_hyp_init();
1103         if (err)
1104                 goto out_free_vfp;
1105
1106 #ifdef CONFIG_KVM_ARM_VGIC
1107                 vgic_present = true;
1108 #endif
1109
1110         /*
1111          * Init HYP architected timer support
1112          */
1113         err = kvm_timer_hyp_init();
1114         if (err)
1115                 goto out_free_mappings;
1116
1117         kvm_info("Hyp mode initialized successfully\n");
1118         return 0;
1119 out_free_vfp:
1120         free_percpu(kvm_host_vfp_state);
1121 out_free_mappings:
1122         free_hyp_pmds();
1123 out_free_stack_pages:
1124         for_each_possible_cpu(cpu)
1125                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1126 out_err:
1127         kvm_err("error initializing Hyp mode: %d\n", err);
1128         return err;
1129 }
1130
1131 /**
1132  * Initialize Hyp-mode and memory mappings on all CPUs.
1133  */
1134 int kvm_arch_init(void *opaque)
1135 {
1136         int err;
1137
1138         if (!is_hyp_mode_available()) {
1139                 kvm_err("HYP mode not available\n");
1140                 return -ENODEV;
1141         }
1142
1143         if (kvm_target_cpu() < 0) {
1144                 kvm_err("Target CPU not supported!\n");
1145                 return -ENODEV;
1146         }
1147
1148         err = init_hyp_mode();
1149         if (err)
1150                 goto out_err;
1151
1152         kvm_coproc_table_init();
1153         return 0;
1154 out_err:
1155         return err;
1156 }
1157
1158 /* NOP: Compiling as a module not supported */
1159 void kvm_arch_exit(void)
1160 {
1161 }
1162
1163 static int arm_init(void)
1164 {
1165         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1166         return rc;
1167 }
1168
1169 module_init(arm_init);