Merge branches 'cleanup', 'fixes', 'misc', 'omap-barrier' and 'uaccess' into for...
[linux-2.6-microblaze.git] / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29
30 #include <linux/atomic.h>
31 #include <asm/smp.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu.h>
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/idmap.h>
37 #include <asm/topology.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/sections.h>
43 #include <asm/tlbflush.h>
44 #include <asm/ptrace.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ipi.h>
52
53 /*
54  * as from 2.5, kernels no longer have an init_tasks structure
55  * so we need some other way of telling a new secondary core
56  * where to place its SVC stack
57  */
58 struct secondary_data secondary_data;
59
60 /*
61  * control for which core is the next to come out of the secondary
62  * boot "holding pen"
63  */
64 volatile int pen_release = -1;
65
66 enum ipi_msg_type {
67         IPI_WAKEUP,
68         IPI_TIMER,
69         IPI_RESCHEDULE,
70         IPI_CALL_FUNC,
71         IPI_CALL_FUNC_SINGLE,
72         IPI_CPU_STOP,
73         IPI_IRQ_WORK,
74         IPI_COMPLETION,
75 };
76
77 static DECLARE_COMPLETION(cpu_running);
78
79 static struct smp_operations smp_ops;
80
81 void __init smp_set_ops(struct smp_operations *ops)
82 {
83         if (ops)
84                 smp_ops = *ops;
85 };
86
87 static unsigned long get_arch_pgd(pgd_t *pgd)
88 {
89 #ifdef CONFIG_ARM_LPAE
90         return __phys_to_pfn(virt_to_phys(pgd));
91 #else
92         return virt_to_phys(pgd);
93 #endif
94 }
95
96 int __cpu_up(unsigned int cpu, struct task_struct *idle)
97 {
98         int ret;
99
100         if (!smp_ops.smp_boot_secondary)
101                 return -ENOSYS;
102
103         /*
104          * We need to tell the secondary core where to find
105          * its stack and the page tables.
106          */
107         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
108 #ifdef CONFIG_ARM_MPU
109         secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
110 #endif
111
112 #ifdef CONFIG_MMU
113         secondary_data.pgdir = virt_to_phys(idmap_pgd);
114         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
115 #endif
116         sync_cache_w(&secondary_data);
117
118         /*
119          * Now bring the CPU into our world.
120          */
121         ret = smp_ops.smp_boot_secondary(cpu, idle);
122         if (ret == 0) {
123                 /*
124                  * CPU was successfully started, wait for it
125                  * to come online or time out.
126                  */
127                 wait_for_completion_timeout(&cpu_running,
128                                                  msecs_to_jiffies(1000));
129
130                 if (!cpu_online(cpu)) {
131                         pr_crit("CPU%u: failed to come online\n", cpu);
132                         ret = -EIO;
133                 }
134         } else {
135                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
136         }
137
138
139         memset(&secondary_data, 0, sizeof(secondary_data));
140         return ret;
141 }
142
143 /* platform specific SMP operations */
144 void __init smp_init_cpus(void)
145 {
146         if (smp_ops.smp_init_cpus)
147                 smp_ops.smp_init_cpus();
148 }
149
150 int platform_can_secondary_boot(void)
151 {
152         return !!smp_ops.smp_boot_secondary;
153 }
154
155 int platform_can_cpu_hotplug(void)
156 {
157 #ifdef CONFIG_HOTPLUG_CPU
158         if (smp_ops.cpu_kill)
159                 return 1;
160 #endif
161
162         return 0;
163 }
164
165 #ifdef CONFIG_HOTPLUG_CPU
166 static int platform_cpu_kill(unsigned int cpu)
167 {
168         if (smp_ops.cpu_kill)
169                 return smp_ops.cpu_kill(cpu);
170         return 1;
171 }
172
173 static int platform_cpu_disable(unsigned int cpu)
174 {
175         if (smp_ops.cpu_disable)
176                 return smp_ops.cpu_disable(cpu);
177
178         return 0;
179 }
180
181 int platform_can_hotplug_cpu(unsigned int cpu)
182 {
183         /* cpu_die must be specified to support hotplug */
184         if (!smp_ops.cpu_die)
185                 return 0;
186
187         if (smp_ops.cpu_can_disable)
188                 return smp_ops.cpu_can_disable(cpu);
189
190         /*
191          * By default, allow disabling all CPUs except the first one,
192          * since this is special on a lot of platforms, e.g. because
193          * of clock tick interrupts.
194          */
195         return cpu != 0;
196 }
197
198 /*
199  * __cpu_disable runs on the processor to be shutdown.
200  */
201 int __cpu_disable(void)
202 {
203         unsigned int cpu = smp_processor_id();
204         int ret;
205
206         ret = platform_cpu_disable(cpu);
207         if (ret)
208                 return ret;
209
210         /*
211          * Take this CPU offline.  Once we clear this, we can't return,
212          * and we must not schedule until we're ready to give up the cpu.
213          */
214         set_cpu_online(cpu, false);
215
216         /*
217          * OK - migrate IRQs away from this CPU
218          */
219         migrate_irqs();
220
221         /*
222          * Flush user cache and TLB mappings, and then remove this CPU
223          * from the vm mask set of all processes.
224          *
225          * Caches are flushed to the Level of Unification Inner Shareable
226          * to write-back dirty lines to unified caches shared by all CPUs.
227          */
228         flush_cache_louis();
229         local_flush_tlb_all();
230
231         clear_tasks_mm_cpumask(cpu);
232
233         return 0;
234 }
235
236 static DECLARE_COMPLETION(cpu_died);
237
238 /*
239  * called on the thread which is asking for a CPU to be shutdown -
240  * waits until shutdown has completed, or it is timed out.
241  */
242 void __cpu_die(unsigned int cpu)
243 {
244         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
245                 pr_err("CPU%u: cpu didn't die\n", cpu);
246                 return;
247         }
248         pr_notice("CPU%u: shutdown\n", cpu);
249
250         /*
251          * platform_cpu_kill() is generally expected to do the powering off
252          * and/or cutting of clocks to the dying CPU.  Optionally, this may
253          * be done by the CPU which is dying in preference to supporting
254          * this call, but that means there is _no_ synchronisation between
255          * the requesting CPU and the dying CPU actually losing power.
256          */
257         if (!platform_cpu_kill(cpu))
258                 pr_err("CPU%u: unable to kill\n", cpu);
259 }
260
261 /*
262  * Called from the idle thread for the CPU which has been shutdown.
263  *
264  * Note that we disable IRQs here, but do not re-enable them
265  * before returning to the caller. This is also the behaviour
266  * of the other hotplug-cpu capable cores, so presumably coming
267  * out of idle fixes this.
268  */
269 void arch_cpu_idle_dead(void)
270 {
271         unsigned int cpu = smp_processor_id();
272
273         idle_task_exit();
274
275         local_irq_disable();
276
277         /*
278          * Flush the data out of the L1 cache for this CPU.  This must be
279          * before the completion to ensure that data is safely written out
280          * before platform_cpu_kill() gets called - which may disable
281          * *this* CPU and power down its cache.
282          */
283         flush_cache_louis();
284
285         /*
286          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
287          * this returns, power and/or clocks can be removed at any point
288          * from this CPU and its cache by platform_cpu_kill().
289          */
290         complete(&cpu_died);
291
292         /*
293          * Ensure that the cache lines associated with that completion are
294          * written out.  This covers the case where _this_ CPU is doing the
295          * powering down, to ensure that the completion is visible to the
296          * CPU waiting for this one.
297          */
298         flush_cache_louis();
299
300         /*
301          * The actual CPU shutdown procedure is at least platform (if not
302          * CPU) specific.  This may remove power, or it may simply spin.
303          *
304          * Platforms are generally expected *NOT* to return from this call,
305          * although there are some which do because they have no way to
306          * power down the CPU.  These platforms are the _only_ reason we
307          * have a return path which uses the fragment of assembly below.
308          *
309          * The return path should not be used for platforms which can
310          * power off the CPU.
311          */
312         if (smp_ops.cpu_die)
313                 smp_ops.cpu_die(cpu);
314
315         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
316                 cpu);
317
318         /*
319          * Do not return to the idle loop - jump back to the secondary
320          * cpu initialisation.  There's some initialisation which needs
321          * to be repeated to undo the effects of taking the CPU offline.
322          */
323         __asm__("mov    sp, %0\n"
324         "       mov     fp, #0\n"
325         "       b       secondary_start_kernel"
326                 :
327                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
328 }
329 #endif /* CONFIG_HOTPLUG_CPU */
330
331 /*
332  * Called by both boot and secondaries to move global data into
333  * per-processor storage.
334  */
335 static void smp_store_cpu_info(unsigned int cpuid)
336 {
337         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
338
339         cpu_info->loops_per_jiffy = loops_per_jiffy;
340         cpu_info->cpuid = read_cpuid_id();
341
342         store_cpu_topology(cpuid);
343 }
344
345 /*
346  * This is the secondary CPU boot entry.  We're using this CPUs
347  * idle thread stack, but a set of temporary page tables.
348  */
349 asmlinkage void secondary_start_kernel(void)
350 {
351         struct mm_struct *mm = &init_mm;
352         unsigned int cpu;
353
354         /*
355          * The identity mapping is uncached (strongly ordered), so
356          * switch away from it before attempting any exclusive accesses.
357          */
358         cpu_switch_mm(mm->pgd, mm);
359         local_flush_bp_all();
360         enter_lazy_tlb(mm, current);
361         local_flush_tlb_all();
362
363         /*
364          * All kernel threads share the same mm context; grab a
365          * reference and switch to it.
366          */
367         cpu = smp_processor_id();
368         atomic_inc(&mm->mm_count);
369         current->active_mm = mm;
370         cpumask_set_cpu(cpu, mm_cpumask(mm));
371
372         cpu_init();
373
374         pr_debug("CPU%u: Booted secondary processor\n", cpu);
375
376         preempt_disable();
377         trace_hardirqs_off();
378
379         /*
380          * Give the platform a chance to do its own initialisation.
381          */
382         if (smp_ops.smp_secondary_init)
383                 smp_ops.smp_secondary_init(cpu);
384
385         notify_cpu_starting(cpu);
386
387         calibrate_delay();
388
389         smp_store_cpu_info(cpu);
390
391         /*
392          * OK, now it's safe to let the boot CPU continue.  Wait for
393          * the CPU migration code to notice that the CPU is online
394          * before we continue - which happens after __cpu_up returns.
395          */
396         set_cpu_online(cpu, true);
397         complete(&cpu_running);
398
399         local_irq_enable();
400         local_fiq_enable();
401
402         /*
403          * OK, it's off to the idle thread for us
404          */
405         cpu_startup_entry(CPUHP_ONLINE);
406 }
407
408 void __init smp_cpus_done(unsigned int max_cpus)
409 {
410         int cpu;
411         unsigned long bogosum = 0;
412
413         for_each_online_cpu(cpu)
414                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
415
416         printk(KERN_INFO "SMP: Total of %d processors activated "
417                "(%lu.%02lu BogoMIPS).\n",
418                num_online_cpus(),
419                bogosum / (500000/HZ),
420                (bogosum / (5000/HZ)) % 100);
421
422         hyp_mode_check();
423 }
424
425 void __init smp_prepare_boot_cpu(void)
426 {
427         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
428 }
429
430 void __init smp_prepare_cpus(unsigned int max_cpus)
431 {
432         unsigned int ncores = num_possible_cpus();
433
434         init_cpu_topology();
435
436         smp_store_cpu_info(smp_processor_id());
437
438         /*
439          * are we trying to boot more cores than exist?
440          */
441         if (max_cpus > ncores)
442                 max_cpus = ncores;
443         if (ncores > 1 && max_cpus) {
444                 /*
445                  * Initialise the present map, which describes the set of CPUs
446                  * actually populated at the present time. A platform should
447                  * re-initialize the map in the platforms smp_prepare_cpus()
448                  * if present != possible (e.g. physical hotplug).
449                  */
450                 init_cpu_present(cpu_possible_mask);
451
452                 /*
453                  * Initialise the SCU if there are more than one CPU
454                  * and let them know where to start.
455                  */
456                 if (smp_ops.smp_prepare_cpus)
457                         smp_ops.smp_prepare_cpus(max_cpus);
458         }
459 }
460
461 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
462
463 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
464 {
465         if (!__smp_cross_call)
466                 __smp_cross_call = fn;
467 }
468
469 static const char *ipi_types[NR_IPI] __tracepoint_string = {
470 #define S(x,s)  [x] = s
471         S(IPI_WAKEUP, "CPU wakeup interrupts"),
472         S(IPI_TIMER, "Timer broadcast interrupts"),
473         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
474         S(IPI_CALL_FUNC, "Function call interrupts"),
475         S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
476         S(IPI_CPU_STOP, "CPU stop interrupts"),
477         S(IPI_IRQ_WORK, "IRQ work interrupts"),
478         S(IPI_COMPLETION, "completion interrupts"),
479 };
480
481 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
482 {
483         trace_ipi_raise(target, ipi_types[ipinr]);
484         __smp_cross_call(target, ipinr);
485 }
486
487 void show_ipi_list(struct seq_file *p, int prec)
488 {
489         unsigned int cpu, i;
490
491         for (i = 0; i < NR_IPI; i++) {
492                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
493
494                 for_each_online_cpu(cpu)
495                         seq_printf(p, "%10u ",
496                                    __get_irq_stat(cpu, ipi_irqs[i]));
497
498                 seq_printf(p, " %s\n", ipi_types[i]);
499         }
500 }
501
502 u64 smp_irq_stat_cpu(unsigned int cpu)
503 {
504         u64 sum = 0;
505         int i;
506
507         for (i = 0; i < NR_IPI; i++)
508                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
509
510         return sum;
511 }
512
513 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
514 {
515         smp_cross_call(mask, IPI_CALL_FUNC);
516 }
517
518 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
519 {
520         smp_cross_call(mask, IPI_WAKEUP);
521 }
522
523 void arch_send_call_function_single_ipi(int cpu)
524 {
525         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
526 }
527
528 #ifdef CONFIG_IRQ_WORK
529 void arch_irq_work_raise(void)
530 {
531         if (arch_irq_work_has_interrupt())
532                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
533 }
534 #endif
535
536 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
537 void tick_broadcast(const struct cpumask *mask)
538 {
539         smp_cross_call(mask, IPI_TIMER);
540 }
541 #endif
542
543 static DEFINE_RAW_SPINLOCK(stop_lock);
544
545 /*
546  * ipi_cpu_stop - handle IPI from smp_send_stop()
547  */
548 static void ipi_cpu_stop(unsigned int cpu)
549 {
550         if (system_state == SYSTEM_BOOTING ||
551             system_state == SYSTEM_RUNNING) {
552                 raw_spin_lock(&stop_lock);
553                 pr_crit("CPU%u: stopping\n", cpu);
554                 dump_stack();
555                 raw_spin_unlock(&stop_lock);
556         }
557
558         set_cpu_online(cpu, false);
559
560         local_fiq_disable();
561         local_irq_disable();
562
563         while (1)
564                 cpu_relax();
565 }
566
567 static DEFINE_PER_CPU(struct completion *, cpu_completion);
568
569 int register_ipi_completion(struct completion *completion, int cpu)
570 {
571         per_cpu(cpu_completion, cpu) = completion;
572         return IPI_COMPLETION;
573 }
574
575 static void ipi_complete(unsigned int cpu)
576 {
577         complete(per_cpu(cpu_completion, cpu));
578 }
579
580 /*
581  * Main handler for inter-processor interrupts
582  */
583 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
584 {
585         handle_IPI(ipinr, regs);
586 }
587
588 void handle_IPI(int ipinr, struct pt_regs *regs)
589 {
590         unsigned int cpu = smp_processor_id();
591         struct pt_regs *old_regs = set_irq_regs(regs);
592
593         if ((unsigned)ipinr < NR_IPI) {
594                 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
595                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
596         }
597
598         switch (ipinr) {
599         case IPI_WAKEUP:
600                 break;
601
602 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
603         case IPI_TIMER:
604                 irq_enter();
605                 tick_receive_broadcast();
606                 irq_exit();
607                 break;
608 #endif
609
610         case IPI_RESCHEDULE:
611                 scheduler_ipi();
612                 break;
613
614         case IPI_CALL_FUNC:
615                 irq_enter();
616                 generic_smp_call_function_interrupt();
617                 irq_exit();
618                 break;
619
620         case IPI_CALL_FUNC_SINGLE:
621                 irq_enter();
622                 generic_smp_call_function_single_interrupt();
623                 irq_exit();
624                 break;
625
626         case IPI_CPU_STOP:
627                 irq_enter();
628                 ipi_cpu_stop(cpu);
629                 irq_exit();
630                 break;
631
632 #ifdef CONFIG_IRQ_WORK
633         case IPI_IRQ_WORK:
634                 irq_enter();
635                 irq_work_run();
636                 irq_exit();
637                 break;
638 #endif
639
640         case IPI_COMPLETION:
641                 irq_enter();
642                 ipi_complete(cpu);
643                 irq_exit();
644                 break;
645
646         default:
647                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
648                         cpu, ipinr);
649                 break;
650         }
651
652         if ((unsigned)ipinr < NR_IPI)
653                 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
654         set_irq_regs(old_regs);
655 }
656
657 void smp_send_reschedule(int cpu)
658 {
659         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
660 }
661
662 void smp_send_stop(void)
663 {
664         unsigned long timeout;
665         struct cpumask mask;
666
667         cpumask_copy(&mask, cpu_online_mask);
668         cpumask_clear_cpu(smp_processor_id(), &mask);
669         if (!cpumask_empty(&mask))
670                 smp_cross_call(&mask, IPI_CPU_STOP);
671
672         /* Wait up to one second for other CPUs to stop */
673         timeout = USEC_PER_SEC;
674         while (num_online_cpus() > 1 && timeout--)
675                 udelay(1);
676
677         if (num_online_cpus() > 1)
678                 pr_warn("SMP: failed to stop secondary CPUs\n");
679 }
680
681 /*
682  * not supported here
683  */
684 int setup_profiling_timer(unsigned int multiplier)
685 {
686         return -EINVAL;
687 }
688
689 #ifdef CONFIG_CPU_FREQ
690
691 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
692 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
693 static unsigned long global_l_p_j_ref;
694 static unsigned long global_l_p_j_ref_freq;
695
696 static int cpufreq_callback(struct notifier_block *nb,
697                                         unsigned long val, void *data)
698 {
699         struct cpufreq_freqs *freq = data;
700         int cpu = freq->cpu;
701
702         if (freq->flags & CPUFREQ_CONST_LOOPS)
703                 return NOTIFY_OK;
704
705         if (!per_cpu(l_p_j_ref, cpu)) {
706                 per_cpu(l_p_j_ref, cpu) =
707                         per_cpu(cpu_data, cpu).loops_per_jiffy;
708                 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
709                 if (!global_l_p_j_ref) {
710                         global_l_p_j_ref = loops_per_jiffy;
711                         global_l_p_j_ref_freq = freq->old;
712                 }
713         }
714
715         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
716             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
717                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
718                                                 global_l_p_j_ref_freq,
719                                                 freq->new);
720                 per_cpu(cpu_data, cpu).loops_per_jiffy =
721                         cpufreq_scale(per_cpu(l_p_j_ref, cpu),
722                                         per_cpu(l_p_j_ref_freq, cpu),
723                                         freq->new);
724         }
725         return NOTIFY_OK;
726 }
727
728 static struct notifier_block cpufreq_notifier = {
729         .notifier_call  = cpufreq_callback,
730 };
731
732 static int __init register_cpufreq_notifier(void)
733 {
734         return cpufreq_register_notifier(&cpufreq_notifier,
735                                                 CPUFREQ_TRANSITION_NOTIFIER);
736 }
737 core_initcall(register_cpufreq_notifier);
738
739 #endif