Merge branches 'acpi-apei', 'acpi-processor', 'acpi-tables', 'acpi-pci' and 'acpi...
[linux-2.6-microblaze.git] / arch / arm / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29
30 #include <linux/atomic.h>
31 #include <asm/bugs.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/procinfo.h>
43 #include <asm/processor.h>
44 #include <asm/sections.h>
45 #include <asm/tlbflush.h>
46 #include <asm/ptrace.h>
47 #include <asm/smp_plat.h>
48 #include <asm/virt.h>
49 #include <asm/mach/arch.h>
50 #include <asm/mpu.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ipi.h>
54
55 /*
56  * as from 2.5, kernels no longer have an init_tasks structure
57  * so we need some other way of telling a new secondary core
58  * where to place its SVC stack
59  */
60 struct secondary_data secondary_data;
61
62 enum ipi_msg_type {
63         IPI_WAKEUP,
64         IPI_TIMER,
65         IPI_RESCHEDULE,
66         IPI_CALL_FUNC,
67         IPI_CPU_STOP,
68         IPI_IRQ_WORK,
69         IPI_COMPLETION,
70         /*
71          * CPU_BACKTRACE is special and not included in NR_IPI
72          * or tracable with trace_ipi_*
73          */
74         IPI_CPU_BACKTRACE,
75         /*
76          * SGI8-15 can be reserved by secure firmware, and thus may
77          * not be usable by the kernel. Please keep the above limited
78          * to at most 8 entries.
79          */
80 };
81
82 static DECLARE_COMPLETION(cpu_running);
83
84 static struct smp_operations smp_ops __ro_after_init;
85
86 void __init smp_set_ops(const struct smp_operations *ops)
87 {
88         if (ops)
89                 smp_ops = *ops;
90 };
91
92 static unsigned long get_arch_pgd(pgd_t *pgd)
93 {
94 #ifdef CONFIG_ARM_LPAE
95         return __phys_to_pfn(virt_to_phys(pgd));
96 #else
97         return virt_to_phys(pgd);
98 #endif
99 }
100
101 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
102 static int secondary_biglittle_prepare(unsigned int cpu)
103 {
104         if (!cpu_vtable[cpu])
105                 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
106
107         return cpu_vtable[cpu] ? 0 : -ENOMEM;
108 }
109
110 static void secondary_biglittle_init(void)
111 {
112         init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
113 }
114 #else
115 static int secondary_biglittle_prepare(unsigned int cpu)
116 {
117         return 0;
118 }
119
120 static void secondary_biglittle_init(void)
121 {
122 }
123 #endif
124
125 int __cpu_up(unsigned int cpu, struct task_struct *idle)
126 {
127         int ret;
128
129         if (!smp_ops.smp_boot_secondary)
130                 return -ENOSYS;
131
132         ret = secondary_biglittle_prepare(cpu);
133         if (ret)
134                 return ret;
135
136         /*
137          * We need to tell the secondary core where to find
138          * its stack and the page tables.
139          */
140         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
141 #ifdef CONFIG_ARM_MPU
142         secondary_data.mpu_rgn_info = &mpu_rgn_info;
143 #endif
144
145 #ifdef CONFIG_MMU
146         secondary_data.pgdir = virt_to_phys(idmap_pgd);
147         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
148 #endif
149         sync_cache_w(&secondary_data);
150
151         /*
152          * Now bring the CPU into our world.
153          */
154         ret = smp_ops.smp_boot_secondary(cpu, idle);
155         if (ret == 0) {
156                 /*
157                  * CPU was successfully started, wait for it
158                  * to come online or time out.
159                  */
160                 wait_for_completion_timeout(&cpu_running,
161                                                  msecs_to_jiffies(1000));
162
163                 if (!cpu_online(cpu)) {
164                         pr_crit("CPU%u: failed to come online\n", cpu);
165                         ret = -EIO;
166                 }
167         } else {
168                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
169         }
170
171
172         memset(&secondary_data, 0, sizeof(secondary_data));
173         return ret;
174 }
175
176 /* platform specific SMP operations */
177 void __init smp_init_cpus(void)
178 {
179         if (smp_ops.smp_init_cpus)
180                 smp_ops.smp_init_cpus();
181 }
182
183 int platform_can_secondary_boot(void)
184 {
185         return !!smp_ops.smp_boot_secondary;
186 }
187
188 int platform_can_cpu_hotplug(void)
189 {
190 #ifdef CONFIG_HOTPLUG_CPU
191         if (smp_ops.cpu_kill)
192                 return 1;
193 #endif
194
195         return 0;
196 }
197
198 #ifdef CONFIG_HOTPLUG_CPU
199 static int platform_cpu_kill(unsigned int cpu)
200 {
201         if (smp_ops.cpu_kill)
202                 return smp_ops.cpu_kill(cpu);
203         return 1;
204 }
205
206 static int platform_cpu_disable(unsigned int cpu)
207 {
208         if (smp_ops.cpu_disable)
209                 return smp_ops.cpu_disable(cpu);
210
211         return 0;
212 }
213
214 int platform_can_hotplug_cpu(unsigned int cpu)
215 {
216         /* cpu_die must be specified to support hotplug */
217         if (!smp_ops.cpu_die)
218                 return 0;
219
220         if (smp_ops.cpu_can_disable)
221                 return smp_ops.cpu_can_disable(cpu);
222
223         /*
224          * By default, allow disabling all CPUs except the first one,
225          * since this is special on a lot of platforms, e.g. because
226          * of clock tick interrupts.
227          */
228         return cpu != 0;
229 }
230
231 /*
232  * __cpu_disable runs on the processor to be shutdown.
233  */
234 int __cpu_disable(void)
235 {
236         unsigned int cpu = smp_processor_id();
237         int ret;
238
239         ret = platform_cpu_disable(cpu);
240         if (ret)
241                 return ret;
242
243         /*
244          * Take this CPU offline.  Once we clear this, we can't return,
245          * and we must not schedule until we're ready to give up the cpu.
246          */
247         set_cpu_online(cpu, false);
248
249         /*
250          * OK - migrate IRQs away from this CPU
251          */
252         irq_migrate_all_off_this_cpu();
253
254         /*
255          * Flush user cache and TLB mappings, and then remove this CPU
256          * from the vm mask set of all processes.
257          *
258          * Caches are flushed to the Level of Unification Inner Shareable
259          * to write-back dirty lines to unified caches shared by all CPUs.
260          */
261         flush_cache_louis();
262         local_flush_tlb_all();
263
264         return 0;
265 }
266
267 static DECLARE_COMPLETION(cpu_died);
268
269 /*
270  * called on the thread which is asking for a CPU to be shutdown -
271  * waits until shutdown has completed, or it is timed out.
272  */
273 void __cpu_die(unsigned int cpu)
274 {
275         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
276                 pr_err("CPU%u: cpu didn't die\n", cpu);
277                 return;
278         }
279         pr_debug("CPU%u: shutdown\n", cpu);
280
281         clear_tasks_mm_cpumask(cpu);
282         /*
283          * platform_cpu_kill() is generally expected to do the powering off
284          * and/or cutting of clocks to the dying CPU.  Optionally, this may
285          * be done by the CPU which is dying in preference to supporting
286          * this call, but that means there is _no_ synchronisation between
287          * the requesting CPU and the dying CPU actually losing power.
288          */
289         if (!platform_cpu_kill(cpu))
290                 pr_err("CPU%u: unable to kill\n", cpu);
291 }
292
293 /*
294  * Called from the idle thread for the CPU which has been shutdown.
295  *
296  * Note that we disable IRQs here, but do not re-enable them
297  * before returning to the caller. This is also the behaviour
298  * of the other hotplug-cpu capable cores, so presumably coming
299  * out of idle fixes this.
300  */
301 void arch_cpu_idle_dead(void)
302 {
303         unsigned int cpu = smp_processor_id();
304
305         idle_task_exit();
306
307         local_irq_disable();
308
309         /*
310          * Flush the data out of the L1 cache for this CPU.  This must be
311          * before the completion to ensure that data is safely written out
312          * before platform_cpu_kill() gets called - which may disable
313          * *this* CPU and power down its cache.
314          */
315         flush_cache_louis();
316
317         /*
318          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
319          * this returns, power and/or clocks can be removed at any point
320          * from this CPU and its cache by platform_cpu_kill().
321          */
322         complete(&cpu_died);
323
324         /*
325          * Ensure that the cache lines associated with that completion are
326          * written out.  This covers the case where _this_ CPU is doing the
327          * powering down, to ensure that the completion is visible to the
328          * CPU waiting for this one.
329          */
330         flush_cache_louis();
331
332         /*
333          * The actual CPU shutdown procedure is at least platform (if not
334          * CPU) specific.  This may remove power, or it may simply spin.
335          *
336          * Platforms are generally expected *NOT* to return from this call,
337          * although there are some which do because they have no way to
338          * power down the CPU.  These platforms are the _only_ reason we
339          * have a return path which uses the fragment of assembly below.
340          *
341          * The return path should not be used for platforms which can
342          * power off the CPU.
343          */
344         if (smp_ops.cpu_die)
345                 smp_ops.cpu_die(cpu);
346
347         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
348                 cpu);
349
350         /*
351          * Do not return to the idle loop - jump back to the secondary
352          * cpu initialisation.  There's some initialisation which needs
353          * to be repeated to undo the effects of taking the CPU offline.
354          */
355         __asm__("mov    sp, %0\n"
356         "       mov     fp, #0\n"
357         "       b       secondary_start_kernel"
358                 :
359                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
360 }
361 #endif /* CONFIG_HOTPLUG_CPU */
362
363 /*
364  * Called by both boot and secondaries to move global data into
365  * per-processor storage.
366  */
367 static void smp_store_cpu_info(unsigned int cpuid)
368 {
369         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
370
371         cpu_info->loops_per_jiffy = loops_per_jiffy;
372         cpu_info->cpuid = read_cpuid_id();
373
374         store_cpu_topology(cpuid);
375         check_cpu_icache_size(cpuid);
376 }
377
378 /*
379  * This is the secondary CPU boot entry.  We're using this CPUs
380  * idle thread stack, but a set of temporary page tables.
381  */
382 asmlinkage void secondary_start_kernel(void)
383 {
384         struct mm_struct *mm = &init_mm;
385         unsigned int cpu;
386
387         secondary_biglittle_init();
388
389         /*
390          * The identity mapping is uncached (strongly ordered), so
391          * switch away from it before attempting any exclusive accesses.
392          */
393         cpu_switch_mm(mm->pgd, mm);
394         local_flush_bp_all();
395         enter_lazy_tlb(mm, current);
396         local_flush_tlb_all();
397
398         /*
399          * All kernel threads share the same mm context; grab a
400          * reference and switch to it.
401          */
402         cpu = smp_processor_id();
403         mmgrab(mm);
404         current->active_mm = mm;
405         cpumask_set_cpu(cpu, mm_cpumask(mm));
406
407         cpu_init();
408
409 #ifndef CONFIG_MMU
410         setup_vectors_base();
411 #endif
412         pr_debug("CPU%u: Booted secondary processor\n", cpu);
413
414         preempt_disable();
415         trace_hardirqs_off();
416
417         /*
418          * Give the platform a chance to do its own initialisation.
419          */
420         if (smp_ops.smp_secondary_init)
421                 smp_ops.smp_secondary_init(cpu);
422
423         notify_cpu_starting(cpu);
424
425         calibrate_delay();
426
427         smp_store_cpu_info(cpu);
428
429         /*
430          * OK, now it's safe to let the boot CPU continue.  Wait for
431          * the CPU migration code to notice that the CPU is online
432          * before we continue - which happens after __cpu_up returns.
433          */
434         set_cpu_online(cpu, true);
435
436         check_other_bugs();
437
438         complete(&cpu_running);
439
440         local_irq_enable();
441         local_fiq_enable();
442         local_abt_enable();
443
444         /*
445          * OK, it's off to the idle thread for us
446          */
447         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
448 }
449
450 void __init smp_cpus_done(unsigned int max_cpus)
451 {
452         int cpu;
453         unsigned long bogosum = 0;
454
455         for_each_online_cpu(cpu)
456                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
457
458         printk(KERN_INFO "SMP: Total of %d processors activated "
459                "(%lu.%02lu BogoMIPS).\n",
460                num_online_cpus(),
461                bogosum / (500000/HZ),
462                (bogosum / (5000/HZ)) % 100);
463
464         hyp_mode_check();
465 }
466
467 void __init smp_prepare_boot_cpu(void)
468 {
469         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
470 }
471
472 void __init smp_prepare_cpus(unsigned int max_cpus)
473 {
474         unsigned int ncores = num_possible_cpus();
475
476         init_cpu_topology();
477
478         smp_store_cpu_info(smp_processor_id());
479
480         /*
481          * are we trying to boot more cores than exist?
482          */
483         if (max_cpus > ncores)
484                 max_cpus = ncores;
485         if (ncores > 1 && max_cpus) {
486                 /*
487                  * Initialise the present map, which describes the set of CPUs
488                  * actually populated at the present time. A platform should
489                  * re-initialize the map in the platforms smp_prepare_cpus()
490                  * if present != possible (e.g. physical hotplug).
491                  */
492                 init_cpu_present(cpu_possible_mask);
493
494                 /*
495                  * Initialise the SCU if there are more than one CPU
496                  * and let them know where to start.
497                  */
498                 if (smp_ops.smp_prepare_cpus)
499                         smp_ops.smp_prepare_cpus(max_cpus);
500         }
501 }
502
503 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
504
505 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
506 {
507         if (!__smp_cross_call)
508                 __smp_cross_call = fn;
509 }
510
511 static const char *ipi_types[NR_IPI] __tracepoint_string = {
512 #define S(x,s)  [x] = s
513         S(IPI_WAKEUP, "CPU wakeup interrupts"),
514         S(IPI_TIMER, "Timer broadcast interrupts"),
515         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
516         S(IPI_CALL_FUNC, "Function call interrupts"),
517         S(IPI_CPU_STOP, "CPU stop interrupts"),
518         S(IPI_IRQ_WORK, "IRQ work interrupts"),
519         S(IPI_COMPLETION, "completion interrupts"),
520 };
521
522 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
523 {
524         trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
525         __smp_cross_call(target, ipinr);
526 }
527
528 void show_ipi_list(struct seq_file *p, int prec)
529 {
530         unsigned int cpu, i;
531
532         for (i = 0; i < NR_IPI; i++) {
533                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
534
535                 for_each_online_cpu(cpu)
536                         seq_printf(p, "%10u ",
537                                    __get_irq_stat(cpu, ipi_irqs[i]));
538
539                 seq_printf(p, " %s\n", ipi_types[i]);
540         }
541 }
542
543 u64 smp_irq_stat_cpu(unsigned int cpu)
544 {
545         u64 sum = 0;
546         int i;
547
548         for (i = 0; i < NR_IPI; i++)
549                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
550
551         return sum;
552 }
553
554 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
555 {
556         smp_cross_call(mask, IPI_CALL_FUNC);
557 }
558
559 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
560 {
561         smp_cross_call(mask, IPI_WAKEUP);
562 }
563
564 void arch_send_call_function_single_ipi(int cpu)
565 {
566         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
567 }
568
569 #ifdef CONFIG_IRQ_WORK
570 void arch_irq_work_raise(void)
571 {
572         if (arch_irq_work_has_interrupt())
573                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
574 }
575 #endif
576
577 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
578 void tick_broadcast(const struct cpumask *mask)
579 {
580         smp_cross_call(mask, IPI_TIMER);
581 }
582 #endif
583
584 static DEFINE_RAW_SPINLOCK(stop_lock);
585
586 /*
587  * ipi_cpu_stop - handle IPI from smp_send_stop()
588  */
589 static void ipi_cpu_stop(unsigned int cpu)
590 {
591         if (system_state <= SYSTEM_RUNNING) {
592                 raw_spin_lock(&stop_lock);
593                 pr_crit("CPU%u: stopping\n", cpu);
594                 dump_stack();
595                 raw_spin_unlock(&stop_lock);
596         }
597
598         set_cpu_online(cpu, false);
599
600         local_fiq_disable();
601         local_irq_disable();
602
603         while (1) {
604                 cpu_relax();
605                 wfe();
606         }
607 }
608
609 static DEFINE_PER_CPU(struct completion *, cpu_completion);
610
611 int register_ipi_completion(struct completion *completion, int cpu)
612 {
613         per_cpu(cpu_completion, cpu) = completion;
614         return IPI_COMPLETION;
615 }
616
617 static void ipi_complete(unsigned int cpu)
618 {
619         complete(per_cpu(cpu_completion, cpu));
620 }
621
622 /*
623  * Main handler for inter-processor interrupts
624  */
625 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
626 {
627         handle_IPI(ipinr, regs);
628 }
629
630 void handle_IPI(int ipinr, struct pt_regs *regs)
631 {
632         unsigned int cpu = smp_processor_id();
633         struct pt_regs *old_regs = set_irq_regs(regs);
634
635         if ((unsigned)ipinr < NR_IPI) {
636                 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
637                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
638         }
639
640         switch (ipinr) {
641         case IPI_WAKEUP:
642                 break;
643
644 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
645         case IPI_TIMER:
646                 irq_enter();
647                 tick_receive_broadcast();
648                 irq_exit();
649                 break;
650 #endif
651
652         case IPI_RESCHEDULE:
653                 scheduler_ipi();
654                 break;
655
656         case IPI_CALL_FUNC:
657                 irq_enter();
658                 generic_smp_call_function_interrupt();
659                 irq_exit();
660                 break;
661
662         case IPI_CPU_STOP:
663                 irq_enter();
664                 ipi_cpu_stop(cpu);
665                 irq_exit();
666                 break;
667
668 #ifdef CONFIG_IRQ_WORK
669         case IPI_IRQ_WORK:
670                 irq_enter();
671                 irq_work_run();
672                 irq_exit();
673                 break;
674 #endif
675
676         case IPI_COMPLETION:
677                 irq_enter();
678                 ipi_complete(cpu);
679                 irq_exit();
680                 break;
681
682         case IPI_CPU_BACKTRACE:
683                 printk_nmi_enter();
684                 irq_enter();
685                 nmi_cpu_backtrace(regs);
686                 irq_exit();
687                 printk_nmi_exit();
688                 break;
689
690         default:
691                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
692                         cpu, ipinr);
693                 break;
694         }
695
696         if ((unsigned)ipinr < NR_IPI)
697                 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
698         set_irq_regs(old_regs);
699 }
700
701 void smp_send_reschedule(int cpu)
702 {
703         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
704 }
705
706 void smp_send_stop(void)
707 {
708         unsigned long timeout;
709         struct cpumask mask;
710
711         cpumask_copy(&mask, cpu_online_mask);
712         cpumask_clear_cpu(smp_processor_id(), &mask);
713         if (!cpumask_empty(&mask))
714                 smp_cross_call(&mask, IPI_CPU_STOP);
715
716         /* Wait up to one second for other CPUs to stop */
717         timeout = USEC_PER_SEC;
718         while (num_online_cpus() > 1 && timeout--)
719                 udelay(1);
720
721         if (num_online_cpus() > 1)
722                 pr_warn("SMP: failed to stop secondary CPUs\n");
723 }
724
725 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
726  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
727  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
728  * kdump fails. So split out the panic_smp_self_stop() and add
729  * set_cpu_online(smp_processor_id(), false).
730  */
731 void panic_smp_self_stop(void)
732 {
733         pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
734                  smp_processor_id());
735         set_cpu_online(smp_processor_id(), false);
736         while (1)
737                 cpu_relax();
738 }
739
740 /*
741  * not supported here
742  */
743 int setup_profiling_timer(unsigned int multiplier)
744 {
745         return -EINVAL;
746 }
747
748 #ifdef CONFIG_CPU_FREQ
749
750 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
751 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
752 static unsigned long global_l_p_j_ref;
753 static unsigned long global_l_p_j_ref_freq;
754
755 static int cpufreq_callback(struct notifier_block *nb,
756                                         unsigned long val, void *data)
757 {
758         struct cpufreq_freqs *freq = data;
759         struct cpumask *cpus = freq->policy->cpus;
760         int cpu, first = cpumask_first(cpus);
761         unsigned int lpj;
762
763         if (freq->flags & CPUFREQ_CONST_LOOPS)
764                 return NOTIFY_OK;
765
766         if (!per_cpu(l_p_j_ref, first)) {
767                 for_each_cpu(cpu, cpus) {
768                         per_cpu(l_p_j_ref, cpu) =
769                                 per_cpu(cpu_data, cpu).loops_per_jiffy;
770                         per_cpu(l_p_j_ref_freq, cpu) = freq->old;
771                 }
772
773                 if (!global_l_p_j_ref) {
774                         global_l_p_j_ref = loops_per_jiffy;
775                         global_l_p_j_ref_freq = freq->old;
776                 }
777         }
778
779         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
780             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
781                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
782                                                 global_l_p_j_ref_freq,
783                                                 freq->new);
784
785                 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
786                                     per_cpu(l_p_j_ref_freq, first), freq->new);
787                 for_each_cpu(cpu, cpus)
788                         per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
789         }
790         return NOTIFY_OK;
791 }
792
793 static struct notifier_block cpufreq_notifier = {
794         .notifier_call  = cpufreq_callback,
795 };
796
797 static int __init register_cpufreq_notifier(void)
798 {
799         return cpufreq_register_notifier(&cpufreq_notifier,
800                                                 CPUFREQ_TRANSITION_NOTIFIER);
801 }
802 core_initcall(register_cpufreq_notifier);
803
804 #endif
805
806 static void raise_nmi(cpumask_t *mask)
807 {
808         __smp_cross_call(mask, IPI_CPU_BACKTRACE);
809 }
810
811 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
812 {
813         nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
814 }