ARM: 8872/1: Use common outgoing-CPU-notification code
[linux-2.6-microblaze.git] / arch / arm / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29
30 #include <linux/atomic.h>
31 #include <asm/bugs.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/procinfo.h>
43 #include <asm/processor.h>
44 #include <asm/sections.h>
45 #include <asm/tlbflush.h>
46 #include <asm/ptrace.h>
47 #include <asm/smp_plat.h>
48 #include <asm/virt.h>
49 #include <asm/mach/arch.h>
50 #include <asm/mpu.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ipi.h>
54
55 /*
56  * as from 2.5, kernels no longer have an init_tasks structure
57  * so we need some other way of telling a new secondary core
58  * where to place its SVC stack
59  */
60 struct secondary_data secondary_data;
61
62 enum ipi_msg_type {
63         IPI_WAKEUP,
64         IPI_TIMER,
65         IPI_RESCHEDULE,
66         IPI_CALL_FUNC,
67         IPI_CPU_STOP,
68         IPI_IRQ_WORK,
69         IPI_COMPLETION,
70         /*
71          * CPU_BACKTRACE is special and not included in NR_IPI
72          * or tracable with trace_ipi_*
73          */
74         IPI_CPU_BACKTRACE,
75         /*
76          * SGI8-15 can be reserved by secure firmware, and thus may
77          * not be usable by the kernel. Please keep the above limited
78          * to at most 8 entries.
79          */
80 };
81
82 static DECLARE_COMPLETION(cpu_running);
83
84 static struct smp_operations smp_ops __ro_after_init;
85
86 void __init smp_set_ops(const struct smp_operations *ops)
87 {
88         if (ops)
89                 smp_ops = *ops;
90 };
91
92 static unsigned long get_arch_pgd(pgd_t *pgd)
93 {
94 #ifdef CONFIG_ARM_LPAE
95         return __phys_to_pfn(virt_to_phys(pgd));
96 #else
97         return virt_to_phys(pgd);
98 #endif
99 }
100
101 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
102 static int secondary_biglittle_prepare(unsigned int cpu)
103 {
104         if (!cpu_vtable[cpu])
105                 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
106
107         return cpu_vtable[cpu] ? 0 : -ENOMEM;
108 }
109
110 static void secondary_biglittle_init(void)
111 {
112         init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
113 }
114 #else
115 static int secondary_biglittle_prepare(unsigned int cpu)
116 {
117         return 0;
118 }
119
120 static void secondary_biglittle_init(void)
121 {
122 }
123 #endif
124
125 int __cpu_up(unsigned int cpu, struct task_struct *idle)
126 {
127         int ret;
128
129         if (!smp_ops.smp_boot_secondary)
130                 return -ENOSYS;
131
132         ret = secondary_biglittle_prepare(cpu);
133         if (ret)
134                 return ret;
135
136         /*
137          * We need to tell the secondary core where to find
138          * its stack and the page tables.
139          */
140         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
141 #ifdef CONFIG_ARM_MPU
142         secondary_data.mpu_rgn_info = &mpu_rgn_info;
143 #endif
144
145 #ifdef CONFIG_MMU
146         secondary_data.pgdir = virt_to_phys(idmap_pgd);
147         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
148 #endif
149         sync_cache_w(&secondary_data);
150
151         /*
152          * Now bring the CPU into our world.
153          */
154         ret = smp_ops.smp_boot_secondary(cpu, idle);
155         if (ret == 0) {
156                 /*
157                  * CPU was successfully started, wait for it
158                  * to come online or time out.
159                  */
160                 wait_for_completion_timeout(&cpu_running,
161                                                  msecs_to_jiffies(1000));
162
163                 if (!cpu_online(cpu)) {
164                         pr_crit("CPU%u: failed to come online\n", cpu);
165                         ret = -EIO;
166                 }
167         } else {
168                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
169         }
170
171
172         memset(&secondary_data, 0, sizeof(secondary_data));
173         return ret;
174 }
175
176 /* platform specific SMP operations */
177 void __init smp_init_cpus(void)
178 {
179         if (smp_ops.smp_init_cpus)
180                 smp_ops.smp_init_cpus();
181 }
182
183 int platform_can_secondary_boot(void)
184 {
185         return !!smp_ops.smp_boot_secondary;
186 }
187
188 int platform_can_cpu_hotplug(void)
189 {
190 #ifdef CONFIG_HOTPLUG_CPU
191         if (smp_ops.cpu_kill)
192                 return 1;
193 #endif
194
195         return 0;
196 }
197
198 #ifdef CONFIG_HOTPLUG_CPU
199 static int platform_cpu_kill(unsigned int cpu)
200 {
201         if (smp_ops.cpu_kill)
202                 return smp_ops.cpu_kill(cpu);
203         return 1;
204 }
205
206 static int platform_cpu_disable(unsigned int cpu)
207 {
208         if (smp_ops.cpu_disable)
209                 return smp_ops.cpu_disable(cpu);
210
211         return 0;
212 }
213
214 int platform_can_hotplug_cpu(unsigned int cpu)
215 {
216         /* cpu_die must be specified to support hotplug */
217         if (!smp_ops.cpu_die)
218                 return 0;
219
220         if (smp_ops.cpu_can_disable)
221                 return smp_ops.cpu_can_disable(cpu);
222
223         /*
224          * By default, allow disabling all CPUs except the first one,
225          * since this is special on a lot of platforms, e.g. because
226          * of clock tick interrupts.
227          */
228         return cpu != 0;
229 }
230
231 /*
232  * __cpu_disable runs on the processor to be shutdown.
233  */
234 int __cpu_disable(void)
235 {
236         unsigned int cpu = smp_processor_id();
237         int ret;
238
239         ret = platform_cpu_disable(cpu);
240         if (ret)
241                 return ret;
242
243         /*
244          * Take this CPU offline.  Once we clear this, we can't return,
245          * and we must not schedule until we're ready to give up the cpu.
246          */
247         set_cpu_online(cpu, false);
248
249         /*
250          * OK - migrate IRQs away from this CPU
251          */
252         irq_migrate_all_off_this_cpu();
253
254         /*
255          * Flush user cache and TLB mappings, and then remove this CPU
256          * from the vm mask set of all processes.
257          *
258          * Caches are flushed to the Level of Unification Inner Shareable
259          * to write-back dirty lines to unified caches shared by all CPUs.
260          */
261         flush_cache_louis();
262         local_flush_tlb_all();
263
264         return 0;
265 }
266
267 /*
268  * called on the thread which is asking for a CPU to be shutdown -
269  * waits until shutdown has completed, or it is timed out.
270  */
271 void __cpu_die(unsigned int cpu)
272 {
273         if (!cpu_wait_death(cpu, 5)) {
274                 pr_err("CPU%u: cpu didn't die\n", cpu);
275                 return;
276         }
277         pr_debug("CPU%u: shutdown\n", cpu);
278
279         clear_tasks_mm_cpumask(cpu);
280         /*
281          * platform_cpu_kill() is generally expected to do the powering off
282          * and/or cutting of clocks to the dying CPU.  Optionally, this may
283          * be done by the CPU which is dying in preference to supporting
284          * this call, but that means there is _no_ synchronisation between
285          * the requesting CPU and the dying CPU actually losing power.
286          */
287         if (!platform_cpu_kill(cpu))
288                 pr_err("CPU%u: unable to kill\n", cpu);
289 }
290
291 /*
292  * Called from the idle thread for the CPU which has been shutdown.
293  *
294  * Note that we disable IRQs here, but do not re-enable them
295  * before returning to the caller. This is also the behaviour
296  * of the other hotplug-cpu capable cores, so presumably coming
297  * out of idle fixes this.
298  */
299 void arch_cpu_idle_dead(void)
300 {
301         unsigned int cpu = smp_processor_id();
302
303         idle_task_exit();
304
305         local_irq_disable();
306
307         /*
308          * Flush the data out of the L1 cache for this CPU.  This must be
309          * before the completion to ensure that data is safely written out
310          * before platform_cpu_kill() gets called - which may disable
311          * *this* CPU and power down its cache.
312          */
313         flush_cache_louis();
314
315         /*
316          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
317          * this returns, power and/or clocks can be removed at any point
318          * from this CPU and its cache by platform_cpu_kill().
319          */
320         (void)cpu_report_death();
321
322         /*
323          * Ensure that the cache lines associated with that completion are
324          * written out.  This covers the case where _this_ CPU is doing the
325          * powering down, to ensure that the completion is visible to the
326          * CPU waiting for this one.
327          */
328         flush_cache_louis();
329
330         /*
331          * The actual CPU shutdown procedure is at least platform (if not
332          * CPU) specific.  This may remove power, or it may simply spin.
333          *
334          * Platforms are generally expected *NOT* to return from this call,
335          * although there are some which do because they have no way to
336          * power down the CPU.  These platforms are the _only_ reason we
337          * have a return path which uses the fragment of assembly below.
338          *
339          * The return path should not be used for platforms which can
340          * power off the CPU.
341          */
342         if (smp_ops.cpu_die)
343                 smp_ops.cpu_die(cpu);
344
345         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
346                 cpu);
347
348         /*
349          * Do not return to the idle loop - jump back to the secondary
350          * cpu initialisation.  There's some initialisation which needs
351          * to be repeated to undo the effects of taking the CPU offline.
352          */
353         __asm__("mov    sp, %0\n"
354         "       mov     fp, #0\n"
355         "       b       secondary_start_kernel"
356                 :
357                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
358 }
359 #endif /* CONFIG_HOTPLUG_CPU */
360
361 /*
362  * Called by both boot and secondaries to move global data into
363  * per-processor storage.
364  */
365 static void smp_store_cpu_info(unsigned int cpuid)
366 {
367         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
368
369         cpu_info->loops_per_jiffy = loops_per_jiffy;
370         cpu_info->cpuid = read_cpuid_id();
371
372         store_cpu_topology(cpuid);
373         check_cpu_icache_size(cpuid);
374 }
375
376 /*
377  * This is the secondary CPU boot entry.  We're using this CPUs
378  * idle thread stack, but a set of temporary page tables.
379  */
380 asmlinkage void secondary_start_kernel(void)
381 {
382         struct mm_struct *mm = &init_mm;
383         unsigned int cpu;
384
385         secondary_biglittle_init();
386
387         /*
388          * The identity mapping is uncached (strongly ordered), so
389          * switch away from it before attempting any exclusive accesses.
390          */
391         cpu_switch_mm(mm->pgd, mm);
392         local_flush_bp_all();
393         enter_lazy_tlb(mm, current);
394         local_flush_tlb_all();
395
396         /*
397          * All kernel threads share the same mm context; grab a
398          * reference and switch to it.
399          */
400         cpu = smp_processor_id();
401         mmgrab(mm);
402         current->active_mm = mm;
403         cpumask_set_cpu(cpu, mm_cpumask(mm));
404
405         cpu_init();
406
407 #ifndef CONFIG_MMU
408         setup_vectors_base();
409 #endif
410         pr_debug("CPU%u: Booted secondary processor\n", cpu);
411
412         preempt_disable();
413         trace_hardirqs_off();
414
415         /*
416          * Give the platform a chance to do its own initialisation.
417          */
418         if (smp_ops.smp_secondary_init)
419                 smp_ops.smp_secondary_init(cpu);
420
421         notify_cpu_starting(cpu);
422
423         calibrate_delay();
424
425         smp_store_cpu_info(cpu);
426
427         /*
428          * OK, now it's safe to let the boot CPU continue.  Wait for
429          * the CPU migration code to notice that the CPU is online
430          * before we continue - which happens after __cpu_up returns.
431          */
432         set_cpu_online(cpu, true);
433
434         check_other_bugs();
435
436         complete(&cpu_running);
437
438         local_irq_enable();
439         local_fiq_enable();
440         local_abt_enable();
441
442         /*
443          * OK, it's off to the idle thread for us
444          */
445         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
446 }
447
448 void __init smp_cpus_done(unsigned int max_cpus)
449 {
450         int cpu;
451         unsigned long bogosum = 0;
452
453         for_each_online_cpu(cpu)
454                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
455
456         printk(KERN_INFO "SMP: Total of %d processors activated "
457                "(%lu.%02lu BogoMIPS).\n",
458                num_online_cpus(),
459                bogosum / (500000/HZ),
460                (bogosum / (5000/HZ)) % 100);
461
462         hyp_mode_check();
463 }
464
465 void __init smp_prepare_boot_cpu(void)
466 {
467         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
468 }
469
470 void __init smp_prepare_cpus(unsigned int max_cpus)
471 {
472         unsigned int ncores = num_possible_cpus();
473
474         init_cpu_topology();
475
476         smp_store_cpu_info(smp_processor_id());
477
478         /*
479          * are we trying to boot more cores than exist?
480          */
481         if (max_cpus > ncores)
482                 max_cpus = ncores;
483         if (ncores > 1 && max_cpus) {
484                 /*
485                  * Initialise the present map, which describes the set of CPUs
486                  * actually populated at the present time. A platform should
487                  * re-initialize the map in the platforms smp_prepare_cpus()
488                  * if present != possible (e.g. physical hotplug).
489                  */
490                 init_cpu_present(cpu_possible_mask);
491
492                 /*
493                  * Initialise the SCU if there are more than one CPU
494                  * and let them know where to start.
495                  */
496                 if (smp_ops.smp_prepare_cpus)
497                         smp_ops.smp_prepare_cpus(max_cpus);
498         }
499 }
500
501 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
502
503 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
504 {
505         if (!__smp_cross_call)
506                 __smp_cross_call = fn;
507 }
508
509 static const char *ipi_types[NR_IPI] __tracepoint_string = {
510 #define S(x,s)  [x] = s
511         S(IPI_WAKEUP, "CPU wakeup interrupts"),
512         S(IPI_TIMER, "Timer broadcast interrupts"),
513         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
514         S(IPI_CALL_FUNC, "Function call interrupts"),
515         S(IPI_CPU_STOP, "CPU stop interrupts"),
516         S(IPI_IRQ_WORK, "IRQ work interrupts"),
517         S(IPI_COMPLETION, "completion interrupts"),
518 };
519
520 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
521 {
522         trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
523         __smp_cross_call(target, ipinr);
524 }
525
526 void show_ipi_list(struct seq_file *p, int prec)
527 {
528         unsigned int cpu, i;
529
530         for (i = 0; i < NR_IPI; i++) {
531                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
532
533                 for_each_online_cpu(cpu)
534                         seq_printf(p, "%10u ",
535                                    __get_irq_stat(cpu, ipi_irqs[i]));
536
537                 seq_printf(p, " %s\n", ipi_types[i]);
538         }
539 }
540
541 u64 smp_irq_stat_cpu(unsigned int cpu)
542 {
543         u64 sum = 0;
544         int i;
545
546         for (i = 0; i < NR_IPI; i++)
547                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
548
549         return sum;
550 }
551
552 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
553 {
554         smp_cross_call(mask, IPI_CALL_FUNC);
555 }
556
557 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
558 {
559         smp_cross_call(mask, IPI_WAKEUP);
560 }
561
562 void arch_send_call_function_single_ipi(int cpu)
563 {
564         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
565 }
566
567 #ifdef CONFIG_IRQ_WORK
568 void arch_irq_work_raise(void)
569 {
570         if (arch_irq_work_has_interrupt())
571                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
572 }
573 #endif
574
575 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
576 void tick_broadcast(const struct cpumask *mask)
577 {
578         smp_cross_call(mask, IPI_TIMER);
579 }
580 #endif
581
582 static DEFINE_RAW_SPINLOCK(stop_lock);
583
584 /*
585  * ipi_cpu_stop - handle IPI from smp_send_stop()
586  */
587 static void ipi_cpu_stop(unsigned int cpu)
588 {
589         if (system_state <= SYSTEM_RUNNING) {
590                 raw_spin_lock(&stop_lock);
591                 pr_crit("CPU%u: stopping\n", cpu);
592                 dump_stack();
593                 raw_spin_unlock(&stop_lock);
594         }
595
596         set_cpu_online(cpu, false);
597
598         local_fiq_disable();
599         local_irq_disable();
600
601         while (1) {
602                 cpu_relax();
603                 wfe();
604         }
605 }
606
607 static DEFINE_PER_CPU(struct completion *, cpu_completion);
608
609 int register_ipi_completion(struct completion *completion, int cpu)
610 {
611         per_cpu(cpu_completion, cpu) = completion;
612         return IPI_COMPLETION;
613 }
614
615 static void ipi_complete(unsigned int cpu)
616 {
617         complete(per_cpu(cpu_completion, cpu));
618 }
619
620 /*
621  * Main handler for inter-processor interrupts
622  */
623 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
624 {
625         handle_IPI(ipinr, regs);
626 }
627
628 void handle_IPI(int ipinr, struct pt_regs *regs)
629 {
630         unsigned int cpu = smp_processor_id();
631         struct pt_regs *old_regs = set_irq_regs(regs);
632
633         if ((unsigned)ipinr < NR_IPI) {
634                 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
635                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
636         }
637
638         switch (ipinr) {
639         case IPI_WAKEUP:
640                 break;
641
642 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
643         case IPI_TIMER:
644                 irq_enter();
645                 tick_receive_broadcast();
646                 irq_exit();
647                 break;
648 #endif
649
650         case IPI_RESCHEDULE:
651                 scheduler_ipi();
652                 break;
653
654         case IPI_CALL_FUNC:
655                 irq_enter();
656                 generic_smp_call_function_interrupt();
657                 irq_exit();
658                 break;
659
660         case IPI_CPU_STOP:
661                 irq_enter();
662                 ipi_cpu_stop(cpu);
663                 irq_exit();
664                 break;
665
666 #ifdef CONFIG_IRQ_WORK
667         case IPI_IRQ_WORK:
668                 irq_enter();
669                 irq_work_run();
670                 irq_exit();
671                 break;
672 #endif
673
674         case IPI_COMPLETION:
675                 irq_enter();
676                 ipi_complete(cpu);
677                 irq_exit();
678                 break;
679
680         case IPI_CPU_BACKTRACE:
681                 printk_nmi_enter();
682                 irq_enter();
683                 nmi_cpu_backtrace(regs);
684                 irq_exit();
685                 printk_nmi_exit();
686                 break;
687
688         default:
689                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
690                         cpu, ipinr);
691                 break;
692         }
693
694         if ((unsigned)ipinr < NR_IPI)
695                 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
696         set_irq_regs(old_regs);
697 }
698
699 void smp_send_reschedule(int cpu)
700 {
701         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
702 }
703
704 void smp_send_stop(void)
705 {
706         unsigned long timeout;
707         struct cpumask mask;
708
709         cpumask_copy(&mask, cpu_online_mask);
710         cpumask_clear_cpu(smp_processor_id(), &mask);
711         if (!cpumask_empty(&mask))
712                 smp_cross_call(&mask, IPI_CPU_STOP);
713
714         /* Wait up to one second for other CPUs to stop */
715         timeout = USEC_PER_SEC;
716         while (num_online_cpus() > 1 && timeout--)
717                 udelay(1);
718
719         if (num_online_cpus() > 1)
720                 pr_warn("SMP: failed to stop secondary CPUs\n");
721 }
722
723 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
724  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
725  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
726  * kdump fails. So split out the panic_smp_self_stop() and add
727  * set_cpu_online(smp_processor_id(), false).
728  */
729 void panic_smp_self_stop(void)
730 {
731         pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
732                  smp_processor_id());
733         set_cpu_online(smp_processor_id(), false);
734         while (1)
735                 cpu_relax();
736 }
737
738 /*
739  * not supported here
740  */
741 int setup_profiling_timer(unsigned int multiplier)
742 {
743         return -EINVAL;
744 }
745
746 #ifdef CONFIG_CPU_FREQ
747
748 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
749 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
750 static unsigned long global_l_p_j_ref;
751 static unsigned long global_l_p_j_ref_freq;
752
753 static int cpufreq_callback(struct notifier_block *nb,
754                                         unsigned long val, void *data)
755 {
756         struct cpufreq_freqs *freq = data;
757         struct cpumask *cpus = freq->policy->cpus;
758         int cpu, first = cpumask_first(cpus);
759         unsigned int lpj;
760
761         if (freq->flags & CPUFREQ_CONST_LOOPS)
762                 return NOTIFY_OK;
763
764         if (!per_cpu(l_p_j_ref, first)) {
765                 for_each_cpu(cpu, cpus) {
766                         per_cpu(l_p_j_ref, cpu) =
767                                 per_cpu(cpu_data, cpu).loops_per_jiffy;
768                         per_cpu(l_p_j_ref_freq, cpu) = freq->old;
769                 }
770
771                 if (!global_l_p_j_ref) {
772                         global_l_p_j_ref = loops_per_jiffy;
773                         global_l_p_j_ref_freq = freq->old;
774                 }
775         }
776
777         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
778             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
779                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
780                                                 global_l_p_j_ref_freq,
781                                                 freq->new);
782
783                 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
784                                     per_cpu(l_p_j_ref_freq, first), freq->new);
785                 for_each_cpu(cpu, cpus)
786                         per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
787         }
788         return NOTIFY_OK;
789 }
790
791 static struct notifier_block cpufreq_notifier = {
792         .notifier_call  = cpufreq_callback,
793 };
794
795 static int __init register_cpufreq_notifier(void)
796 {
797         return cpufreq_register_notifier(&cpufreq_notifier,
798                                                 CPUFREQ_TRANSITION_NOTIFIER);
799 }
800 core_initcall(register_cpufreq_notifier);
801
802 #endif
803
804 static void raise_nmi(cpumask_t *mask)
805 {
806         __smp_cross_call(mask, IPI_CPU_BACKTRACE);
807 }
808
809 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
810 {
811         nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
812 }