Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / arch / arm / kernel / ptrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/ptrace.c
4  *
5  *  By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  */
9 #include <linux/kernel.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/mm.h>
13 #include <linux/elf.h>
14 #include <linux/smp.h>
15 #include <linux/ptrace.h>
16 #include <linux/user.h>
17 #include <linux/security.h>
18 #include <linux/init.h>
19 #include <linux/signal.h>
20 #include <linux/uaccess.h>
21 #include <linux/perf_event.h>
22 #include <linux/hw_breakpoint.h>
23 #include <linux/regset.h>
24 #include <linux/audit.h>
25 #include <linux/tracehook.h>
26 #include <linux/unistd.h>
27
28 #include <asm/pgtable.h>
29 #include <asm/traps.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/syscalls.h>
33
34 #define REG_PC  15
35 #define REG_PSR 16
36 /*
37  * does not yet catch signals sent when the child dies.
38  * in exit.c or in signal.c.
39  */
40
41 #if 0
42 /*
43  * Breakpoint SWI instruction: SWI &9F0001
44  */
45 #define BREAKINST_ARM   0xef9f0001
46 #define BREAKINST_THUMB 0xdf00          /* fill this in later */
47 #else
48 /*
49  * New breakpoints - use an undefined instruction.  The ARM architecture
50  * reference manual guarantees that the following instruction space
51  * will produce an undefined instruction exception on all CPUs:
52  *
53  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
54  *  Thumb: 1101 1110 xxxx xxxx
55  */
56 #define BREAKINST_ARM   0xe7f001f0
57 #define BREAKINST_THUMB 0xde01
58 #endif
59
60 struct pt_regs_offset {
61         const char *name;
62         int offset;
63 };
64
65 #define REG_OFFSET_NAME(r) \
66         {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
67 #define REG_OFFSET_END {.name = NULL, .offset = 0}
68
69 static const struct pt_regs_offset regoffset_table[] = {
70         REG_OFFSET_NAME(r0),
71         REG_OFFSET_NAME(r1),
72         REG_OFFSET_NAME(r2),
73         REG_OFFSET_NAME(r3),
74         REG_OFFSET_NAME(r4),
75         REG_OFFSET_NAME(r5),
76         REG_OFFSET_NAME(r6),
77         REG_OFFSET_NAME(r7),
78         REG_OFFSET_NAME(r8),
79         REG_OFFSET_NAME(r9),
80         REG_OFFSET_NAME(r10),
81         REG_OFFSET_NAME(fp),
82         REG_OFFSET_NAME(ip),
83         REG_OFFSET_NAME(sp),
84         REG_OFFSET_NAME(lr),
85         REG_OFFSET_NAME(pc),
86         REG_OFFSET_NAME(cpsr),
87         REG_OFFSET_NAME(ORIG_r0),
88         REG_OFFSET_END,
89 };
90
91 /**
92  * regs_query_register_offset() - query register offset from its name
93  * @name:       the name of a register
94  *
95  * regs_query_register_offset() returns the offset of a register in struct
96  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
97  */
98 int regs_query_register_offset(const char *name)
99 {
100         const struct pt_regs_offset *roff;
101         for (roff = regoffset_table; roff->name != NULL; roff++)
102                 if (!strcmp(roff->name, name))
103                         return roff->offset;
104         return -EINVAL;
105 }
106
107 /**
108  * regs_query_register_name() - query register name from its offset
109  * @offset:     the offset of a register in struct pt_regs.
110  *
111  * regs_query_register_name() returns the name of a register from its
112  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
113  */
114 const char *regs_query_register_name(unsigned int offset)
115 {
116         const struct pt_regs_offset *roff;
117         for (roff = regoffset_table; roff->name != NULL; roff++)
118                 if (roff->offset == offset)
119                         return roff->name;
120         return NULL;
121 }
122
123 /**
124  * regs_within_kernel_stack() - check the address in the stack
125  * @regs:      pt_regs which contains kernel stack pointer.
126  * @addr:      address which is checked.
127  *
128  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
129  * If @addr is within the kernel stack, it returns true. If not, returns false.
130  */
131 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
132 {
133         return ((addr & ~(THREAD_SIZE - 1))  ==
134                 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
135 }
136
137 /**
138  * regs_get_kernel_stack_nth() - get Nth entry of the stack
139  * @regs:       pt_regs which contains kernel stack pointer.
140  * @n:          stack entry number.
141  *
142  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
143  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
144  * this returns 0.
145  */
146 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
147 {
148         unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
149         addr += n;
150         if (regs_within_kernel_stack(regs, (unsigned long)addr))
151                 return *addr;
152         else
153                 return 0;
154 }
155
156 /*
157  * this routine will get a word off of the processes privileged stack.
158  * the offset is how far from the base addr as stored in the THREAD.
159  * this routine assumes that all the privileged stacks are in our
160  * data space.
161  */
162 static inline long get_user_reg(struct task_struct *task, int offset)
163 {
164         return task_pt_regs(task)->uregs[offset];
165 }
166
167 /*
168  * this routine will put a word on the processes privileged stack.
169  * the offset is how far from the base addr as stored in the THREAD.
170  * this routine assumes that all the privileged stacks are in our
171  * data space.
172  */
173 static inline int
174 put_user_reg(struct task_struct *task, int offset, long data)
175 {
176         struct pt_regs newregs, *regs = task_pt_regs(task);
177         int ret = -EINVAL;
178
179         newregs = *regs;
180         newregs.uregs[offset] = data;
181
182         if (valid_user_regs(&newregs)) {
183                 regs->uregs[offset] = data;
184                 ret = 0;
185         }
186
187         return ret;
188 }
189
190 /*
191  * Called by kernel/ptrace.c when detaching..
192  */
193 void ptrace_disable(struct task_struct *child)
194 {
195         /* Nothing to do. */
196 }
197
198 /*
199  * Handle hitting a breakpoint.
200  */
201 void ptrace_break(struct pt_regs *regs)
202 {
203         force_sig_fault(SIGTRAP, TRAP_BRKPT,
204                         (void __user *)instruction_pointer(regs));
205 }
206
207 static int break_trap(struct pt_regs *regs, unsigned int instr)
208 {
209         ptrace_break(regs);
210         return 0;
211 }
212
213 static struct undef_hook arm_break_hook = {
214         .instr_mask     = 0x0fffffff,
215         .instr_val      = 0x07f001f0,
216         .cpsr_mask      = PSR_T_BIT,
217         .cpsr_val       = 0,
218         .fn             = break_trap,
219 };
220
221 static struct undef_hook thumb_break_hook = {
222         .instr_mask     = 0xffffffff,
223         .instr_val      = 0x0000de01,
224         .cpsr_mask      = PSR_T_BIT,
225         .cpsr_val       = PSR_T_BIT,
226         .fn             = break_trap,
227 };
228
229 static struct undef_hook thumb2_break_hook = {
230         .instr_mask     = 0xffffffff,
231         .instr_val      = 0xf7f0a000,
232         .cpsr_mask      = PSR_T_BIT,
233         .cpsr_val       = PSR_T_BIT,
234         .fn             = break_trap,
235 };
236
237 static int __init ptrace_break_init(void)
238 {
239         register_undef_hook(&arm_break_hook);
240         register_undef_hook(&thumb_break_hook);
241         register_undef_hook(&thumb2_break_hook);
242         return 0;
243 }
244
245 core_initcall(ptrace_break_init);
246
247 /*
248  * Read the word at offset "off" into the "struct user".  We
249  * actually access the pt_regs stored on the kernel stack.
250  */
251 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
252                             unsigned long __user *ret)
253 {
254         unsigned long tmp;
255
256         if (off & 3)
257                 return -EIO;
258
259         tmp = 0;
260         if (off == PT_TEXT_ADDR)
261                 tmp = tsk->mm->start_code;
262         else if (off == PT_DATA_ADDR)
263                 tmp = tsk->mm->start_data;
264         else if (off == PT_TEXT_END_ADDR)
265                 tmp = tsk->mm->end_code;
266         else if (off < sizeof(struct pt_regs))
267                 tmp = get_user_reg(tsk, off >> 2);
268         else if (off >= sizeof(struct user))
269                 return -EIO;
270
271         return put_user(tmp, ret);
272 }
273
274 /*
275  * Write the word at offset "off" into "struct user".  We
276  * actually access the pt_regs stored on the kernel stack.
277  */
278 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
279                              unsigned long val)
280 {
281         if (off & 3 || off >= sizeof(struct user))
282                 return -EIO;
283
284         if (off >= sizeof(struct pt_regs))
285                 return 0;
286
287         return put_user_reg(tsk, off >> 2, val);
288 }
289
290 #ifdef CONFIG_IWMMXT
291
292 /*
293  * Get the child iWMMXt state.
294  */
295 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
296 {
297         struct thread_info *thread = task_thread_info(tsk);
298
299         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
300                 return -ENODATA;
301         iwmmxt_task_disable(thread);  /* force it to ram */
302         return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
303                 ? -EFAULT : 0;
304 }
305
306 /*
307  * Set the child iWMMXt state.
308  */
309 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
310 {
311         struct thread_info *thread = task_thread_info(tsk);
312
313         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
314                 return -EACCES;
315         iwmmxt_task_release(thread);  /* force a reload */
316         return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
317                 ? -EFAULT : 0;
318 }
319
320 #endif
321
322 #ifdef CONFIG_CRUNCH
323 /*
324  * Get the child Crunch state.
325  */
326 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
327 {
328         struct thread_info *thread = task_thread_info(tsk);
329
330         crunch_task_disable(thread);  /* force it to ram */
331         return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
332                 ? -EFAULT : 0;
333 }
334
335 /*
336  * Set the child Crunch state.
337  */
338 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
339 {
340         struct thread_info *thread = task_thread_info(tsk);
341
342         crunch_task_release(thread);  /* force a reload */
343         return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
344                 ? -EFAULT : 0;
345 }
346 #endif
347
348 #ifdef CONFIG_HAVE_HW_BREAKPOINT
349 /*
350  * Convert a virtual register number into an index for a thread_info
351  * breakpoint array. Breakpoints are identified using positive numbers
352  * whilst watchpoints are negative. The registers are laid out as pairs
353  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
354  * Register 0 is reserved for describing resource information.
355  */
356 static int ptrace_hbp_num_to_idx(long num)
357 {
358         if (num < 0)
359                 num = (ARM_MAX_BRP << 1) - num;
360         return (num - 1) >> 1;
361 }
362
363 /*
364  * Returns the virtual register number for the address of the
365  * breakpoint at index idx.
366  */
367 static long ptrace_hbp_idx_to_num(int idx)
368 {
369         long mid = ARM_MAX_BRP << 1;
370         long num = (idx << 1) + 1;
371         return num > mid ? mid - num : num;
372 }
373
374 /*
375  * Handle hitting a HW-breakpoint.
376  */
377 static void ptrace_hbptriggered(struct perf_event *bp,
378                                      struct perf_sample_data *data,
379                                      struct pt_regs *regs)
380 {
381         struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
382         long num;
383         int i;
384
385         for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
386                 if (current->thread.debug.hbp[i] == bp)
387                         break;
388
389         num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
390
391         force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger));
392 }
393
394 /*
395  * Set ptrace breakpoint pointers to zero for this task.
396  * This is required in order to prevent child processes from unregistering
397  * breakpoints held by their parent.
398  */
399 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
400 {
401         memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
402 }
403
404 /*
405  * Unregister breakpoints from this task and reset the pointers in
406  * the thread_struct.
407  */
408 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
409 {
410         int i;
411         struct thread_struct *t = &tsk->thread;
412
413         for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
414                 if (t->debug.hbp[i]) {
415                         unregister_hw_breakpoint(t->debug.hbp[i]);
416                         t->debug.hbp[i] = NULL;
417                 }
418         }
419 }
420
421 static u32 ptrace_get_hbp_resource_info(void)
422 {
423         u8 num_brps, num_wrps, debug_arch, wp_len;
424         u32 reg = 0;
425
426         num_brps        = hw_breakpoint_slots(TYPE_INST);
427         num_wrps        = hw_breakpoint_slots(TYPE_DATA);
428         debug_arch      = arch_get_debug_arch();
429         wp_len          = arch_get_max_wp_len();
430
431         reg             |= debug_arch;
432         reg             <<= 8;
433         reg             |= wp_len;
434         reg             <<= 8;
435         reg             |= num_wrps;
436         reg             <<= 8;
437         reg             |= num_brps;
438
439         return reg;
440 }
441
442 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
443 {
444         struct perf_event_attr attr;
445
446         ptrace_breakpoint_init(&attr);
447
448         /* Initialise fields to sane defaults. */
449         attr.bp_addr    = 0;
450         attr.bp_len     = HW_BREAKPOINT_LEN_4;
451         attr.bp_type    = type;
452         attr.disabled   = 1;
453
454         return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
455                                            tsk);
456 }
457
458 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
459                              unsigned long  __user *data)
460 {
461         u32 reg;
462         int idx, ret = 0;
463         struct perf_event *bp;
464         struct arch_hw_breakpoint_ctrl arch_ctrl;
465
466         if (num == 0) {
467                 reg = ptrace_get_hbp_resource_info();
468         } else {
469                 idx = ptrace_hbp_num_to_idx(num);
470                 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
471                         ret = -EINVAL;
472                         goto out;
473                 }
474
475                 bp = tsk->thread.debug.hbp[idx];
476                 if (!bp) {
477                         reg = 0;
478                         goto put;
479                 }
480
481                 arch_ctrl = counter_arch_bp(bp)->ctrl;
482
483                 /*
484                  * Fix up the len because we may have adjusted it
485                  * to compensate for an unaligned address.
486                  */
487                 while (!(arch_ctrl.len & 0x1))
488                         arch_ctrl.len >>= 1;
489
490                 if (num & 0x1)
491                         reg = bp->attr.bp_addr;
492                 else
493                         reg = encode_ctrl_reg(arch_ctrl);
494         }
495
496 put:
497         if (put_user(reg, data))
498                 ret = -EFAULT;
499
500 out:
501         return ret;
502 }
503
504 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
505                              unsigned long __user *data)
506 {
507         int idx, gen_len, gen_type, implied_type, ret = 0;
508         u32 user_val;
509         struct perf_event *bp;
510         struct arch_hw_breakpoint_ctrl ctrl;
511         struct perf_event_attr attr;
512
513         if (num == 0)
514                 goto out;
515         else if (num < 0)
516                 implied_type = HW_BREAKPOINT_RW;
517         else
518                 implied_type = HW_BREAKPOINT_X;
519
520         idx = ptrace_hbp_num_to_idx(num);
521         if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
522                 ret = -EINVAL;
523                 goto out;
524         }
525
526         if (get_user(user_val, data)) {
527                 ret = -EFAULT;
528                 goto out;
529         }
530
531         bp = tsk->thread.debug.hbp[idx];
532         if (!bp) {
533                 bp = ptrace_hbp_create(tsk, implied_type);
534                 if (IS_ERR(bp)) {
535                         ret = PTR_ERR(bp);
536                         goto out;
537                 }
538                 tsk->thread.debug.hbp[idx] = bp;
539         }
540
541         attr = bp->attr;
542
543         if (num & 0x1) {
544                 /* Address */
545                 attr.bp_addr    = user_val;
546         } else {
547                 /* Control */
548                 decode_ctrl_reg(user_val, &ctrl);
549                 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
550                 if (ret)
551                         goto out;
552
553                 if ((gen_type & implied_type) != gen_type) {
554                         ret = -EINVAL;
555                         goto out;
556                 }
557
558                 attr.bp_len     = gen_len;
559                 attr.bp_type    = gen_type;
560                 attr.disabled   = !ctrl.enabled;
561         }
562
563         ret = modify_user_hw_breakpoint(bp, &attr);
564 out:
565         return ret;
566 }
567 #endif
568
569 /* regset get/set implementations */
570
571 static int gpr_get(struct task_struct *target,
572                    const struct user_regset *regset,
573                    unsigned int pos, unsigned int count,
574                    void *kbuf, void __user *ubuf)
575 {
576         struct pt_regs *regs = task_pt_regs(target);
577
578         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
579                                    regs,
580                                    0, sizeof(*regs));
581 }
582
583 static int gpr_set(struct task_struct *target,
584                    const struct user_regset *regset,
585                    unsigned int pos, unsigned int count,
586                    const void *kbuf, const void __user *ubuf)
587 {
588         int ret;
589         struct pt_regs newregs = *task_pt_regs(target);
590
591         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
592                                  &newregs,
593                                  0, sizeof(newregs));
594         if (ret)
595                 return ret;
596
597         if (!valid_user_regs(&newregs))
598                 return -EINVAL;
599
600         *task_pt_regs(target) = newregs;
601         return 0;
602 }
603
604 static int fpa_get(struct task_struct *target,
605                    const struct user_regset *regset,
606                    unsigned int pos, unsigned int count,
607                    void *kbuf, void __user *ubuf)
608 {
609         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
610                                    &task_thread_info(target)->fpstate,
611                                    0, sizeof(struct user_fp));
612 }
613
614 static int fpa_set(struct task_struct *target,
615                    const struct user_regset *regset,
616                    unsigned int pos, unsigned int count,
617                    const void *kbuf, const void __user *ubuf)
618 {
619         struct thread_info *thread = task_thread_info(target);
620
621         thread->used_cp[1] = thread->used_cp[2] = 1;
622
623         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
624                 &thread->fpstate,
625                 0, sizeof(struct user_fp));
626 }
627
628 #ifdef CONFIG_VFP
629 /*
630  * VFP register get/set implementations.
631  *
632  * With respect to the kernel, struct user_fp is divided into three chunks:
633  * 16 or 32 real VFP registers (d0-d15 or d0-31)
634  *      These are transferred to/from the real registers in the task's
635  *      vfp_hard_struct.  The number of registers depends on the kernel
636  *      configuration.
637  *
638  * 16 or 0 fake VFP registers (d16-d31 or empty)
639  *      i.e., the user_vfp structure has space for 32 registers even if
640  *      the kernel doesn't have them all.
641  *
642  *      vfp_get() reads this chunk as zero where applicable
643  *      vfp_set() ignores this chunk
644  *
645  * 1 word for the FPSCR
646  *
647  * The bounds-checking logic built into user_regset_copyout and friends
648  * means that we can make a simple sequence of calls to map the relevant data
649  * to/from the specified slice of the user regset structure.
650  */
651 static int vfp_get(struct task_struct *target,
652                    const struct user_regset *regset,
653                    unsigned int pos, unsigned int count,
654                    void *kbuf, void __user *ubuf)
655 {
656         int ret;
657         struct thread_info *thread = task_thread_info(target);
658         struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
659         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
660         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
661
662         vfp_sync_hwstate(thread);
663
664         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
665                                   &vfp->fpregs,
666                                   user_fpregs_offset,
667                                   user_fpregs_offset + sizeof(vfp->fpregs));
668         if (ret)
669                 return ret;
670
671         ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
672                                        user_fpregs_offset + sizeof(vfp->fpregs),
673                                        user_fpscr_offset);
674         if (ret)
675                 return ret;
676
677         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
678                                    &vfp->fpscr,
679                                    user_fpscr_offset,
680                                    user_fpscr_offset + sizeof(vfp->fpscr));
681 }
682
683 /*
684  * For vfp_set() a read-modify-write is done on the VFP registers,
685  * in order to avoid writing back a half-modified set of registers on
686  * failure.
687  */
688 static int vfp_set(struct task_struct *target,
689                           const struct user_regset *regset,
690                           unsigned int pos, unsigned int count,
691                           const void *kbuf, const void __user *ubuf)
692 {
693         int ret;
694         struct thread_info *thread = task_thread_info(target);
695         struct vfp_hard_struct new_vfp;
696         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
697         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
698
699         vfp_sync_hwstate(thread);
700         new_vfp = thread->vfpstate.hard;
701
702         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
703                                   &new_vfp.fpregs,
704                                   user_fpregs_offset,
705                                   user_fpregs_offset + sizeof(new_vfp.fpregs));
706         if (ret)
707                 return ret;
708
709         ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
710                                 user_fpregs_offset + sizeof(new_vfp.fpregs),
711                                 user_fpscr_offset);
712         if (ret)
713                 return ret;
714
715         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
716                                  &new_vfp.fpscr,
717                                  user_fpscr_offset,
718                                  user_fpscr_offset + sizeof(new_vfp.fpscr));
719         if (ret)
720                 return ret;
721
722         thread->vfpstate.hard = new_vfp;
723         vfp_flush_hwstate(thread);
724
725         return 0;
726 }
727 #endif /* CONFIG_VFP */
728
729 enum arm_regset {
730         REGSET_GPR,
731         REGSET_FPR,
732 #ifdef CONFIG_VFP
733         REGSET_VFP,
734 #endif
735 };
736
737 static const struct user_regset arm_regsets[] = {
738         [REGSET_GPR] = {
739                 .core_note_type = NT_PRSTATUS,
740                 .n = ELF_NGREG,
741                 .size = sizeof(u32),
742                 .align = sizeof(u32),
743                 .get = gpr_get,
744                 .set = gpr_set
745         },
746         [REGSET_FPR] = {
747                 /*
748                  * For the FPA regs in fpstate, the real fields are a mixture
749                  * of sizes, so pretend that the registers are word-sized:
750                  */
751                 .core_note_type = NT_PRFPREG,
752                 .n = sizeof(struct user_fp) / sizeof(u32),
753                 .size = sizeof(u32),
754                 .align = sizeof(u32),
755                 .get = fpa_get,
756                 .set = fpa_set
757         },
758 #ifdef CONFIG_VFP
759         [REGSET_VFP] = {
760                 /*
761                  * Pretend that the VFP regs are word-sized, since the FPSCR is
762                  * a single word dangling at the end of struct user_vfp:
763                  */
764                 .core_note_type = NT_ARM_VFP,
765                 .n = ARM_VFPREGS_SIZE / sizeof(u32),
766                 .size = sizeof(u32),
767                 .align = sizeof(u32),
768                 .get = vfp_get,
769                 .set = vfp_set
770         },
771 #endif /* CONFIG_VFP */
772 };
773
774 static const struct user_regset_view user_arm_view = {
775         .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
776         .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
777 };
778
779 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
780 {
781         return &user_arm_view;
782 }
783
784 long arch_ptrace(struct task_struct *child, long request,
785                  unsigned long addr, unsigned long data)
786 {
787         int ret;
788         unsigned long __user *datap = (unsigned long __user *) data;
789
790         switch (request) {
791                 case PTRACE_PEEKUSR:
792                         ret = ptrace_read_user(child, addr, datap);
793                         break;
794
795                 case PTRACE_POKEUSR:
796                         ret = ptrace_write_user(child, addr, data);
797                         break;
798
799                 case PTRACE_GETREGS:
800                         ret = copy_regset_to_user(child,
801                                                   &user_arm_view, REGSET_GPR,
802                                                   0, sizeof(struct pt_regs),
803                                                   datap);
804                         break;
805
806                 case PTRACE_SETREGS:
807                         ret = copy_regset_from_user(child,
808                                                     &user_arm_view, REGSET_GPR,
809                                                     0, sizeof(struct pt_regs),
810                                                     datap);
811                         break;
812
813                 case PTRACE_GETFPREGS:
814                         ret = copy_regset_to_user(child,
815                                                   &user_arm_view, REGSET_FPR,
816                                                   0, sizeof(union fp_state),
817                                                   datap);
818                         break;
819
820                 case PTRACE_SETFPREGS:
821                         ret = copy_regset_from_user(child,
822                                                     &user_arm_view, REGSET_FPR,
823                                                     0, sizeof(union fp_state),
824                                                     datap);
825                         break;
826
827 #ifdef CONFIG_IWMMXT
828                 case PTRACE_GETWMMXREGS:
829                         ret = ptrace_getwmmxregs(child, datap);
830                         break;
831
832                 case PTRACE_SETWMMXREGS:
833                         ret = ptrace_setwmmxregs(child, datap);
834                         break;
835 #endif
836
837                 case PTRACE_GET_THREAD_AREA:
838                         ret = put_user(task_thread_info(child)->tp_value[0],
839                                        datap);
840                         break;
841
842                 case PTRACE_SET_SYSCALL:
843                         task_thread_info(child)->syscall = data;
844                         ret = 0;
845                         break;
846
847 #ifdef CONFIG_CRUNCH
848                 case PTRACE_GETCRUNCHREGS:
849                         ret = ptrace_getcrunchregs(child, datap);
850                         break;
851
852                 case PTRACE_SETCRUNCHREGS:
853                         ret = ptrace_setcrunchregs(child, datap);
854                         break;
855 #endif
856
857 #ifdef CONFIG_VFP
858                 case PTRACE_GETVFPREGS:
859                         ret = copy_regset_to_user(child,
860                                                   &user_arm_view, REGSET_VFP,
861                                                   0, ARM_VFPREGS_SIZE,
862                                                   datap);
863                         break;
864
865                 case PTRACE_SETVFPREGS:
866                         ret = copy_regset_from_user(child,
867                                                     &user_arm_view, REGSET_VFP,
868                                                     0, ARM_VFPREGS_SIZE,
869                                                     datap);
870                         break;
871 #endif
872
873 #ifdef CONFIG_HAVE_HW_BREAKPOINT
874                 case PTRACE_GETHBPREGS:
875                         ret = ptrace_gethbpregs(child, addr,
876                                                 (unsigned long __user *)data);
877                         break;
878                 case PTRACE_SETHBPREGS:
879                         ret = ptrace_sethbpregs(child, addr,
880                                                 (unsigned long __user *)data);
881                         break;
882 #endif
883
884                 default:
885                         ret = ptrace_request(child, request, addr, data);
886                         break;
887         }
888
889         return ret;
890 }
891
892 enum ptrace_syscall_dir {
893         PTRACE_SYSCALL_ENTER = 0,
894         PTRACE_SYSCALL_EXIT,
895 };
896
897 static void tracehook_report_syscall(struct pt_regs *regs,
898                                     enum ptrace_syscall_dir dir)
899 {
900         unsigned long ip;
901
902         /*
903          * IP is used to denote syscall entry/exit:
904          * IP = 0 -> entry, =1 -> exit
905          */
906         ip = regs->ARM_ip;
907         regs->ARM_ip = dir;
908
909         if (dir == PTRACE_SYSCALL_EXIT)
910                 tracehook_report_syscall_exit(regs, 0);
911         else if (tracehook_report_syscall_entry(regs))
912                 current_thread_info()->syscall = -1;
913
914         regs->ARM_ip = ip;
915 }
916
917 asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
918 {
919         current_thread_info()->syscall = scno;
920
921         if (test_thread_flag(TIF_SYSCALL_TRACE))
922                 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
923
924         /* Do seccomp after ptrace; syscall may have changed. */
925 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
926         if (secure_computing() == -1)
927                 return -1;
928 #else
929         /* XXX: remove this once OABI gets fixed */
930         secure_computing_strict(current_thread_info()->syscall);
931 #endif
932
933         /* Tracer or seccomp may have changed syscall. */
934         scno = current_thread_info()->syscall;
935
936         if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
937                 trace_sys_enter(regs, scno);
938
939         audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
940                             regs->ARM_r3);
941
942         return scno;
943 }
944
945 asmlinkage void syscall_trace_exit(struct pt_regs *regs)
946 {
947         /*
948          * Audit the syscall before anything else, as a debugger may
949          * come in and change the current registers.
950          */
951         audit_syscall_exit(regs);
952
953         /*
954          * Note that we haven't updated the ->syscall field for the
955          * current thread. This isn't a problem because it will have
956          * been set on syscall entry and there hasn't been an opportunity
957          * for a PTRACE_SET_SYSCALL since then.
958          */
959         if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
960                 trace_sys_exit(regs, regs_return_value(regs));
961
962         if (test_thread_flag(TIF_SYSCALL_TRACE))
963                 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
964 }