Merge tag 'nfsd-5.5' of git://linux-nfs.org/~bfields/linux
[linux-2.6-microblaze.git] / arch / arm / include / asm / kvm_mmu.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #ifndef __ARM_KVM_MMU_H__
8 #define __ARM_KVM_MMU_H__
9
10 #include <asm/memory.h>
11 #include <asm/page.h>
12
13 /*
14  * We directly use the kernel VA for the HYP, as we can directly share
15  * the mapping (HTTBR "covers" TTBR1).
16  */
17 #define kern_hyp_va(kva)        (kva)
18
19 /* Contrary to arm64, there is no need to generate a PC-relative address */
20 #define hyp_symbol_addr(s)                                              \
21         ({                                                              \
22                 typeof(s) *addr = &(s);                                 \
23                 addr;                                                   \
24         })
25
26 #ifndef __ASSEMBLY__
27
28 #include <linux/highmem.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_hyp.h>
33 #include <asm/pgalloc.h>
34 #include <asm/stage2_pgtable.h>
35
36 /* Ensure compatibility with arm64 */
37 #define VA_BITS                 32
38
39 #define kvm_phys_shift(kvm)             KVM_PHYS_SHIFT
40 #define kvm_phys_size(kvm)              (1ULL << kvm_phys_shift(kvm))
41 #define kvm_phys_mask(kvm)              (kvm_phys_size(kvm) - 1ULL)
42 #define kvm_vttbr_baddr_mask(kvm)       VTTBR_BADDR_MASK
43
44 #define stage2_pgd_size(kvm)            (PTRS_PER_S2_PGD * sizeof(pgd_t))
45
46 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
47 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
48                            void __iomem **kaddr,
49                            void __iomem **haddr);
50 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
51                              void **haddr);
52 void free_hyp_pgds(void);
53
54 void stage2_unmap_vm(struct kvm *kvm);
55 int kvm_alloc_stage2_pgd(struct kvm *kvm);
56 void kvm_free_stage2_pgd(struct kvm *kvm);
57 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
58                           phys_addr_t pa, unsigned long size, bool writable);
59
60 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
61
62 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
63
64 phys_addr_t kvm_mmu_get_httbr(void);
65 phys_addr_t kvm_get_idmap_vector(void);
66 int kvm_mmu_init(void);
67 void kvm_clear_hyp_idmap(void);
68
69 #define kvm_mk_pmd(ptep)        __pmd(__pa(ptep) | PMD_TYPE_TABLE)
70 #define kvm_mk_pud(pmdp)        __pud(__pa(pmdp) | PMD_TYPE_TABLE)
71 #define kvm_mk_pgd(pudp)        ({ BUILD_BUG(); 0; })
72
73 #define kvm_pfn_pte(pfn, prot)  pfn_pte(pfn, prot)
74 #define kvm_pfn_pmd(pfn, prot)  pfn_pmd(pfn, prot)
75 #define kvm_pfn_pud(pfn, prot)  (__pud(0))
76
77 #define kvm_pud_pfn(pud)        ({ WARN_ON(1); 0; })
78
79
80 #define kvm_pmd_mkhuge(pmd)     pmd_mkhuge(pmd)
81 /* No support for pud hugepages */
82 #define kvm_pud_mkhuge(pud)     ( {WARN_ON(1); pud; })
83
84 /*
85  * The following kvm_*pud*() functions are provided strictly to allow
86  * sharing code with arm64. They should never be called in practice.
87  */
88 static inline void kvm_set_s2pud_readonly(pud_t *pud)
89 {
90         WARN_ON(1);
91 }
92
93 static inline bool kvm_s2pud_readonly(pud_t *pud)
94 {
95         WARN_ON(1);
96         return false;
97 }
98
99 static inline void kvm_set_pud(pud_t *pud, pud_t new_pud)
100 {
101         WARN_ON(1);
102 }
103
104 static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
105 {
106         WARN_ON(1);
107         return pud;
108 }
109
110 static inline pud_t kvm_s2pud_mkexec(pud_t pud)
111 {
112         WARN_ON(1);
113         return pud;
114 }
115
116 static inline bool kvm_s2pud_exec(pud_t *pud)
117 {
118         WARN_ON(1);
119         return false;
120 }
121
122 static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
123 {
124         BUG();
125         return pud;
126 }
127
128 static inline bool kvm_s2pud_young(pud_t pud)
129 {
130         WARN_ON(1);
131         return false;
132 }
133
134 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
135 {
136         pte_val(pte) |= L_PTE_S2_RDWR;
137         return pte;
138 }
139
140 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
141 {
142         pmd_val(pmd) |= L_PMD_S2_RDWR;
143         return pmd;
144 }
145
146 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
147 {
148         pte_val(pte) &= ~L_PTE_XN;
149         return pte;
150 }
151
152 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
153 {
154         pmd_val(pmd) &= ~PMD_SECT_XN;
155         return pmd;
156 }
157
158 static inline void kvm_set_s2pte_readonly(pte_t *pte)
159 {
160         pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY;
161 }
162
163 static inline bool kvm_s2pte_readonly(pte_t *pte)
164 {
165         return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY;
166 }
167
168 static inline bool kvm_s2pte_exec(pte_t *pte)
169 {
170         return !(pte_val(*pte) & L_PTE_XN);
171 }
172
173 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
174 {
175         pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY;
176 }
177
178 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
179 {
180         return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY;
181 }
182
183 static inline bool kvm_s2pmd_exec(pmd_t *pmd)
184 {
185         return !(pmd_val(*pmd) & PMD_SECT_XN);
186 }
187
188 static inline bool kvm_page_empty(void *ptr)
189 {
190         struct page *ptr_page = virt_to_page(ptr);
191         return page_count(ptr_page) == 1;
192 }
193
194 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
195 #define kvm_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp)
196 #define kvm_pud_table_empty(kvm, pudp) false
197
198 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
199 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
200 #define hyp_pud_table_empty(pudp) false
201
202 struct kvm;
203
204 #define kvm_flush_dcache_to_poc(a,l)    __cpuc_flush_dcache_area((a), (l))
205
206 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
207 {
208         return (vcpu_cp15(vcpu, c1_SCTLR) & 0b101) == 0b101;
209 }
210
211 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
212 {
213         /*
214          * Clean the dcache to the Point of Coherency.
215          *
216          * We need to do this through a kernel mapping (using the
217          * user-space mapping has proved to be the wrong
218          * solution). For that, we need to kmap one page at a time,
219          * and iterate over the range.
220          */
221
222         VM_BUG_ON(size & ~PAGE_MASK);
223
224         while (size) {
225                 void *va = kmap_atomic_pfn(pfn);
226
227                 kvm_flush_dcache_to_poc(va, PAGE_SIZE);
228
229                 size -= PAGE_SIZE;
230                 pfn++;
231
232                 kunmap_atomic(va);
233         }
234 }
235
236 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
237                                                   unsigned long size)
238 {
239         u32 iclsz;
240
241         /*
242          * If we are going to insert an instruction page and the icache is
243          * either VIPT or PIPT, there is a potential problem where the host
244          * (or another VM) may have used the same page as this guest, and we
245          * read incorrect data from the icache.  If we're using a PIPT cache,
246          * we can invalidate just that page, but if we are using a VIPT cache
247          * we need to invalidate the entire icache - damn shame - as written
248          * in the ARM ARM (DDI 0406C.b - Page B3-1393).
249          *
250          * VIVT caches are tagged using both the ASID and the VMID and doesn't
251          * need any kind of flushing (DDI 0406C.b - Page B3-1392).
252          */
253
254         VM_BUG_ON(size & ~PAGE_MASK);
255
256         if (icache_is_vivt_asid_tagged())
257                 return;
258
259         if (!icache_is_pipt()) {
260                 /* any kind of VIPT cache */
261                 __flush_icache_all();
262                 return;
263         }
264
265         /*
266          * CTR IminLine contains Log2 of the number of words in the
267          * cache line, so we can get the number of words as
268          * 2 << (IminLine - 1).  To get the number of bytes, we
269          * multiply by 4 (the number of bytes in a 32-bit word), and
270          * get 4 << (IminLine).
271          */
272         iclsz = 4 << (read_cpuid(CPUID_CACHETYPE) & 0xf);
273
274         while (size) {
275                 void *va = kmap_atomic_pfn(pfn);
276                 void *end = va + PAGE_SIZE;
277                 void *addr = va;
278
279                 do {
280                         write_sysreg(addr, ICIMVAU);
281                         addr += iclsz;
282                 } while (addr < end);
283
284                 dsb(ishst);
285                 isb();
286
287                 size -= PAGE_SIZE;
288                 pfn++;
289
290                 kunmap_atomic(va);
291         }
292
293         /* Check if we need to invalidate the BTB */
294         if ((read_cpuid_ext(CPUID_EXT_MMFR1) >> 28) != 4) {
295                 write_sysreg(0, BPIALLIS);
296                 dsb(ishst);
297                 isb();
298         }
299 }
300
301 static inline void __kvm_flush_dcache_pte(pte_t pte)
302 {
303         void *va = kmap_atomic(pte_page(pte));
304
305         kvm_flush_dcache_to_poc(va, PAGE_SIZE);
306
307         kunmap_atomic(va);
308 }
309
310 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
311 {
312         unsigned long size = PMD_SIZE;
313         kvm_pfn_t pfn = pmd_pfn(pmd);
314
315         while (size) {
316                 void *va = kmap_atomic_pfn(pfn);
317
318                 kvm_flush_dcache_to_poc(va, PAGE_SIZE);
319
320                 pfn++;
321                 size -= PAGE_SIZE;
322
323                 kunmap_atomic(va);
324         }
325 }
326
327 static inline void __kvm_flush_dcache_pud(pud_t pud)
328 {
329 }
330
331 #define kvm_virt_to_phys(x)             virt_to_idmap((unsigned long)(x))
332
333 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
334 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
335
336 static inline bool __kvm_cpu_uses_extended_idmap(void)
337 {
338         return false;
339 }
340
341 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
342 {
343         return PTRS_PER_PGD;
344 }
345
346 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
347                                        pgd_t *hyp_pgd,
348                                        pgd_t *merged_hyp_pgd,
349                                        unsigned long hyp_idmap_start) { }
350
351 static inline unsigned int kvm_get_vmid_bits(void)
352 {
353         return 8;
354 }
355
356 /*
357  * We are not in the kvm->srcu critical section most of the time, so we take
358  * the SRCU read lock here. Since we copy the data from the user page, we
359  * can immediately drop the lock again.
360  */
361 static inline int kvm_read_guest_lock(struct kvm *kvm,
362                                       gpa_t gpa, void *data, unsigned long len)
363 {
364         int srcu_idx = srcu_read_lock(&kvm->srcu);
365         int ret = kvm_read_guest(kvm, gpa, data, len);
366
367         srcu_read_unlock(&kvm->srcu, srcu_idx);
368
369         return ret;
370 }
371
372 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
373                                        const void *data, unsigned long len)
374 {
375         int srcu_idx = srcu_read_lock(&kvm->srcu);
376         int ret = kvm_write_guest(kvm, gpa, data, len);
377
378         srcu_read_unlock(&kvm->srcu, srcu_idx);
379
380         return ret;
381 }
382
383 static inline void *kvm_get_hyp_vector(void)
384 {
385         switch(read_cpuid_part()) {
386 #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
387         case ARM_CPU_PART_CORTEX_A12:
388         case ARM_CPU_PART_CORTEX_A17:
389         {
390                 extern char __kvm_hyp_vector_bp_inv[];
391                 return kvm_ksym_ref(__kvm_hyp_vector_bp_inv);
392         }
393
394         case ARM_CPU_PART_BRAHMA_B15:
395         case ARM_CPU_PART_CORTEX_A15:
396         {
397                 extern char __kvm_hyp_vector_ic_inv[];
398                 return kvm_ksym_ref(__kvm_hyp_vector_ic_inv);
399         }
400 #endif
401         default:
402         {
403                 extern char __kvm_hyp_vector[];
404                 return kvm_ksym_ref(__kvm_hyp_vector);
405         }
406         }
407 }
408
409 static inline int kvm_map_vectors(void)
410 {
411         return 0;
412 }
413
414 static inline int hyp_map_aux_data(void)
415 {
416         return 0;
417 }
418
419 #define kvm_phys_to_vttbr(addr)         (addr)
420
421 static inline void kvm_set_ipa_limit(void) {}
422
423 static __always_inline u64 kvm_get_vttbr(struct kvm *kvm)
424 {
425         struct kvm_vmid *vmid = &kvm->arch.vmid;
426         u64 vmid_field, baddr;
427
428         baddr = kvm->arch.pgd_phys;
429         vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
430         return kvm_phys_to_vttbr(baddr) | vmid_field;
431 }
432
433 #endif  /* !__ASSEMBLY__ */
434
435 #endif /* __ARM_KVM_MMU_H__ */