Merge branch 'address-masking'
[linux-2.6-microblaze.git] / arch / arm / crypto / ghash-ce-glue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Accelerated GHASH implementation with ARMv8 vmull.p64 instructions.
4  *
5  * Copyright (C) 2015 - 2018 Linaro Ltd.
6  * Copyright (C) 2023 Google LLC.
7  */
8
9 #include <asm/hwcap.h>
10 #include <asm/neon.h>
11 #include <asm/simd.h>
12 #include <asm/unaligned.h>
13 #include <crypto/aes.h>
14 #include <crypto/gcm.h>
15 #include <crypto/b128ops.h>
16 #include <crypto/cryptd.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/internal/hash.h>
19 #include <crypto/internal/simd.h>
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/gf128mul.h>
22 #include <crypto/scatterwalk.h>
23 #include <linux/cpufeature.h>
24 #include <linux/crypto.h>
25 #include <linux/jump_label.h>
26 #include <linux/module.h>
27
28 MODULE_DESCRIPTION("GHASH hash function using ARMv8 Crypto Extensions");
29 MODULE_AUTHOR("Ard Biesheuvel <ardb@kernel.org>");
30 MODULE_LICENSE("GPL");
31 MODULE_ALIAS_CRYPTO("ghash");
32 MODULE_ALIAS_CRYPTO("gcm(aes)");
33 MODULE_ALIAS_CRYPTO("rfc4106(gcm(aes))");
34
35 #define GHASH_BLOCK_SIZE        16
36 #define GHASH_DIGEST_SIZE       16
37
38 #define RFC4106_NONCE_SIZE      4
39
40 struct ghash_key {
41         be128   k;
42         u64     h[][2];
43 };
44
45 struct gcm_key {
46         u64     h[4][2];
47         u32     rk[AES_MAX_KEYLENGTH_U32];
48         int     rounds;
49         u8      nonce[];        // for RFC4106 nonce
50 };
51
52 struct ghash_desc_ctx {
53         u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
54         u8 buf[GHASH_BLOCK_SIZE];
55         u32 count;
56 };
57
58 struct ghash_async_ctx {
59         struct cryptd_ahash *cryptd_tfm;
60 };
61
62 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
63                                        u64 const h[][2], const char *head);
64
65 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
66                                       u64 const h[][2], const char *head);
67
68 static __ro_after_init DEFINE_STATIC_KEY_FALSE(use_p64);
69
70 static int ghash_init(struct shash_desc *desc)
71 {
72         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
73
74         *ctx = (struct ghash_desc_ctx){};
75         return 0;
76 }
77
78 static void ghash_do_update(int blocks, u64 dg[], const char *src,
79                             struct ghash_key *key, const char *head)
80 {
81         if (likely(crypto_simd_usable())) {
82                 kernel_neon_begin();
83                 if (static_branch_likely(&use_p64))
84                         pmull_ghash_update_p64(blocks, dg, src, key->h, head);
85                 else
86                         pmull_ghash_update_p8(blocks, dg, src, key->h, head);
87                 kernel_neon_end();
88         } else {
89                 be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
90
91                 do {
92                         const u8 *in = src;
93
94                         if (head) {
95                                 in = head;
96                                 blocks++;
97                                 head = NULL;
98                         } else {
99                                 src += GHASH_BLOCK_SIZE;
100                         }
101
102                         crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
103                         gf128mul_lle(&dst, &key->k);
104                 } while (--blocks);
105
106                 dg[0] = be64_to_cpu(dst.b);
107                 dg[1] = be64_to_cpu(dst.a);
108         }
109 }
110
111 static int ghash_update(struct shash_desc *desc, const u8 *src,
112                         unsigned int len)
113 {
114         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
115         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
116
117         ctx->count += len;
118
119         if ((partial + len) >= GHASH_BLOCK_SIZE) {
120                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
121                 int blocks;
122
123                 if (partial) {
124                         int p = GHASH_BLOCK_SIZE - partial;
125
126                         memcpy(ctx->buf + partial, src, p);
127                         src += p;
128                         len -= p;
129                 }
130
131                 blocks = len / GHASH_BLOCK_SIZE;
132                 len %= GHASH_BLOCK_SIZE;
133
134                 ghash_do_update(blocks, ctx->digest, src, key,
135                                 partial ? ctx->buf : NULL);
136                 src += blocks * GHASH_BLOCK_SIZE;
137                 partial = 0;
138         }
139         if (len)
140                 memcpy(ctx->buf + partial, src, len);
141         return 0;
142 }
143
144 static int ghash_final(struct shash_desc *desc, u8 *dst)
145 {
146         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
147         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
148
149         if (partial) {
150                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
151
152                 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
153                 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL);
154         }
155         put_unaligned_be64(ctx->digest[1], dst);
156         put_unaligned_be64(ctx->digest[0], dst + 8);
157
158         *ctx = (struct ghash_desc_ctx){};
159         return 0;
160 }
161
162 static void ghash_reflect(u64 h[], const be128 *k)
163 {
164         u64 carry = be64_to_cpu(k->a) >> 63;
165
166         h[0] = (be64_to_cpu(k->b) << 1) | carry;
167         h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
168
169         if (carry)
170                 h[1] ^= 0xc200000000000000UL;
171 }
172
173 static int ghash_setkey(struct crypto_shash *tfm,
174                         const u8 *inkey, unsigned int keylen)
175 {
176         struct ghash_key *key = crypto_shash_ctx(tfm);
177
178         if (keylen != GHASH_BLOCK_SIZE)
179                 return -EINVAL;
180
181         /* needed for the fallback */
182         memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
183         ghash_reflect(key->h[0], &key->k);
184
185         if (static_branch_likely(&use_p64)) {
186                 be128 h = key->k;
187
188                 gf128mul_lle(&h, &key->k);
189                 ghash_reflect(key->h[1], &h);
190
191                 gf128mul_lle(&h, &key->k);
192                 ghash_reflect(key->h[2], &h);
193
194                 gf128mul_lle(&h, &key->k);
195                 ghash_reflect(key->h[3], &h);
196         }
197         return 0;
198 }
199
200 static struct shash_alg ghash_alg = {
201         .digestsize             = GHASH_DIGEST_SIZE,
202         .init                   = ghash_init,
203         .update                 = ghash_update,
204         .final                  = ghash_final,
205         .setkey                 = ghash_setkey,
206         .descsize               = sizeof(struct ghash_desc_ctx),
207
208         .base.cra_name          = "ghash",
209         .base.cra_driver_name   = "ghash-ce-sync",
210         .base.cra_priority      = 300 - 1,
211         .base.cra_blocksize     = GHASH_BLOCK_SIZE,
212         .base.cra_ctxsize       = sizeof(struct ghash_key) + sizeof(u64[2]),
213         .base.cra_module        = THIS_MODULE,
214 };
215
216 static int ghash_async_init(struct ahash_request *req)
217 {
218         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
219         struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
220         struct ahash_request *cryptd_req = ahash_request_ctx(req);
221         struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
222         struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
223         struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);
224
225         desc->tfm = child;
226         return crypto_shash_init(desc);
227 }
228
229 static int ghash_async_update(struct ahash_request *req)
230 {
231         struct ahash_request *cryptd_req = ahash_request_ctx(req);
232         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
233         struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
234         struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
235
236         if (!crypto_simd_usable() ||
237             (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
238                 memcpy(cryptd_req, req, sizeof(*req));
239                 ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
240                 return crypto_ahash_update(cryptd_req);
241         } else {
242                 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
243                 return shash_ahash_update(req, desc);
244         }
245 }
246
247 static int ghash_async_final(struct ahash_request *req)
248 {
249         struct ahash_request *cryptd_req = ahash_request_ctx(req);
250         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
251         struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
252         struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
253
254         if (!crypto_simd_usable() ||
255             (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
256                 memcpy(cryptd_req, req, sizeof(*req));
257                 ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
258                 return crypto_ahash_final(cryptd_req);
259         } else {
260                 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
261                 return crypto_shash_final(desc, req->result);
262         }
263 }
264
265 static int ghash_async_digest(struct ahash_request *req)
266 {
267         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
268         struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
269         struct ahash_request *cryptd_req = ahash_request_ctx(req);
270         struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
271
272         if (!crypto_simd_usable() ||
273             (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
274                 memcpy(cryptd_req, req, sizeof(*req));
275                 ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
276                 return crypto_ahash_digest(cryptd_req);
277         } else {
278                 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
279                 struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);
280
281                 desc->tfm = child;
282                 return shash_ahash_digest(req, desc);
283         }
284 }
285
286 static int ghash_async_import(struct ahash_request *req, const void *in)
287 {
288         struct ahash_request *cryptd_req = ahash_request_ctx(req);
289         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
290         struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
291         struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
292
293         desc->tfm = cryptd_ahash_child(ctx->cryptd_tfm);
294
295         return crypto_shash_import(desc, in);
296 }
297
298 static int ghash_async_export(struct ahash_request *req, void *out)
299 {
300         struct ahash_request *cryptd_req = ahash_request_ctx(req);
301         struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
302
303         return crypto_shash_export(desc, out);
304 }
305
306 static int ghash_async_setkey(struct crypto_ahash *tfm, const u8 *key,
307                               unsigned int keylen)
308 {
309         struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
310         struct crypto_ahash *child = &ctx->cryptd_tfm->base;
311
312         crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
313         crypto_ahash_set_flags(child, crypto_ahash_get_flags(tfm)
314                                & CRYPTO_TFM_REQ_MASK);
315         return crypto_ahash_setkey(child, key, keylen);
316 }
317
318 static int ghash_async_init_tfm(struct crypto_tfm *tfm)
319 {
320         struct cryptd_ahash *cryptd_tfm;
321         struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);
322
323         cryptd_tfm = cryptd_alloc_ahash("ghash-ce-sync", 0, 0);
324         if (IS_ERR(cryptd_tfm))
325                 return PTR_ERR(cryptd_tfm);
326         ctx->cryptd_tfm = cryptd_tfm;
327         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
328                                  sizeof(struct ahash_request) +
329                                  crypto_ahash_reqsize(&cryptd_tfm->base));
330
331         return 0;
332 }
333
334 static void ghash_async_exit_tfm(struct crypto_tfm *tfm)
335 {
336         struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);
337
338         cryptd_free_ahash(ctx->cryptd_tfm);
339 }
340
341 static struct ahash_alg ghash_async_alg = {
342         .init                   = ghash_async_init,
343         .update                 = ghash_async_update,
344         .final                  = ghash_async_final,
345         .setkey                 = ghash_async_setkey,
346         .digest                 = ghash_async_digest,
347         .import                 = ghash_async_import,
348         .export                 = ghash_async_export,
349         .halg.digestsize        = GHASH_DIGEST_SIZE,
350         .halg.statesize         = sizeof(struct ghash_desc_ctx),
351         .halg.base              = {
352                 .cra_name       = "ghash",
353                 .cra_driver_name = "ghash-ce",
354                 .cra_priority   = 300,
355                 .cra_flags      = CRYPTO_ALG_ASYNC,
356                 .cra_blocksize  = GHASH_BLOCK_SIZE,
357                 .cra_ctxsize    = sizeof(struct ghash_async_ctx),
358                 .cra_module     = THIS_MODULE,
359                 .cra_init       = ghash_async_init_tfm,
360                 .cra_exit       = ghash_async_exit_tfm,
361         },
362 };
363
364
365 void pmull_gcm_encrypt(int blocks, u64 dg[], const char *src,
366                        struct gcm_key const *k, char *dst,
367                        const char *iv, int rounds, u32 counter);
368
369 void pmull_gcm_enc_final(int blocks, u64 dg[], char *tag,
370                          struct gcm_key const *k, char *head,
371                          const char *iv, int rounds, u32 counter);
372
373 void pmull_gcm_decrypt(int bytes, u64 dg[], const char *src,
374                        struct gcm_key const *k, char *dst,
375                        const char *iv, int rounds, u32 counter);
376
377 int pmull_gcm_dec_final(int bytes, u64 dg[], char *tag,
378                         struct gcm_key const *k, char *head,
379                         const char *iv, int rounds, u32 counter,
380                         const char *otag, int authsize);
381
382 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey,
383                           unsigned int keylen)
384 {
385         struct gcm_key *ctx = crypto_aead_ctx(tfm);
386         struct crypto_aes_ctx aes_ctx;
387         be128 h, k;
388         int ret;
389
390         ret = aes_expandkey(&aes_ctx, inkey, keylen);
391         if (ret)
392                 return -EINVAL;
393
394         aes_encrypt(&aes_ctx, (u8 *)&k, (u8[AES_BLOCK_SIZE]){});
395
396         memcpy(ctx->rk, aes_ctx.key_enc, sizeof(ctx->rk));
397         ctx->rounds = 6 + keylen / 4;
398
399         memzero_explicit(&aes_ctx, sizeof(aes_ctx));
400
401         ghash_reflect(ctx->h[0], &k);
402
403         h = k;
404         gf128mul_lle(&h, &k);
405         ghash_reflect(ctx->h[1], &h);
406
407         gf128mul_lle(&h, &k);
408         ghash_reflect(ctx->h[2], &h);
409
410         gf128mul_lle(&h, &k);
411         ghash_reflect(ctx->h[3], &h);
412
413         return 0;
414 }
415
416 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
417 {
418         return crypto_gcm_check_authsize(authsize);
419 }
420
421 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
422                            int *buf_count, struct gcm_key *ctx)
423 {
424         if (*buf_count > 0) {
425                 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
426
427                 memcpy(&buf[*buf_count], src, buf_added);
428
429                 *buf_count += buf_added;
430                 src += buf_added;
431                 count -= buf_added;
432         }
433
434         if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
435                 int blocks = count / GHASH_BLOCK_SIZE;
436
437                 pmull_ghash_update_p64(blocks, dg, src, ctx->h,
438                                        *buf_count ? buf : NULL);
439
440                 src += blocks * GHASH_BLOCK_SIZE;
441                 count %= GHASH_BLOCK_SIZE;
442                 *buf_count = 0;
443         }
444
445         if (count > 0) {
446                 memcpy(buf, src, count);
447                 *buf_count = count;
448         }
449 }
450
451 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len)
452 {
453         struct crypto_aead *aead = crypto_aead_reqtfm(req);
454         struct gcm_key *ctx = crypto_aead_ctx(aead);
455         u8 buf[GHASH_BLOCK_SIZE];
456         struct scatter_walk walk;
457         int buf_count = 0;
458
459         scatterwalk_start(&walk, req->src);
460
461         do {
462                 u32 n = scatterwalk_clamp(&walk, len);
463                 u8 *p;
464
465                 if (!n) {
466                         scatterwalk_start(&walk, sg_next(walk.sg));
467                         n = scatterwalk_clamp(&walk, len);
468                 }
469
470                 p = scatterwalk_map(&walk);
471                 gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
472                 scatterwalk_unmap(p);
473
474                 if (unlikely(len / SZ_4K > (len - n) / SZ_4K)) {
475                         kernel_neon_end();
476                         kernel_neon_begin();
477                 }
478
479                 len -= n;
480                 scatterwalk_advance(&walk, n);
481                 scatterwalk_done(&walk, 0, len);
482         } while (len);
483
484         if (buf_count) {
485                 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
486                 pmull_ghash_update_p64(1, dg, buf, ctx->h, NULL);
487         }
488 }
489
490 static int gcm_encrypt(struct aead_request *req, const u8 *iv, u32 assoclen)
491 {
492         struct crypto_aead *aead = crypto_aead_reqtfm(req);
493         struct gcm_key *ctx = crypto_aead_ctx(aead);
494         struct skcipher_walk walk;
495         u8 buf[AES_BLOCK_SIZE];
496         u32 counter = 2;
497         u64 dg[2] = {};
498         be128 lengths;
499         const u8 *src;
500         u8 *tag, *dst;
501         int tail, err;
502
503         if (WARN_ON_ONCE(!may_use_simd()))
504                 return -EBUSY;
505
506         err = skcipher_walk_aead_encrypt(&walk, req, false);
507
508         kernel_neon_begin();
509
510         if (assoclen)
511                 gcm_calculate_auth_mac(req, dg, assoclen);
512
513         src = walk.src.virt.addr;
514         dst = walk.dst.virt.addr;
515
516         while (walk.nbytes >= AES_BLOCK_SIZE) {
517                 int nblocks = walk.nbytes / AES_BLOCK_SIZE;
518
519                 pmull_gcm_encrypt(nblocks, dg, src, ctx, dst, iv,
520                                   ctx->rounds, counter);
521                 counter += nblocks;
522
523                 if (walk.nbytes == walk.total) {
524                         src += nblocks * AES_BLOCK_SIZE;
525                         dst += nblocks * AES_BLOCK_SIZE;
526                         break;
527                 }
528
529                 kernel_neon_end();
530
531                 err = skcipher_walk_done(&walk,
532                                          walk.nbytes % AES_BLOCK_SIZE);
533                 if (err)
534                         return err;
535
536                 src = walk.src.virt.addr;
537                 dst = walk.dst.virt.addr;
538
539                 kernel_neon_begin();
540         }
541
542
543         lengths.a = cpu_to_be64(assoclen * 8);
544         lengths.b = cpu_to_be64(req->cryptlen * 8);
545
546         tag = (u8 *)&lengths;
547         tail = walk.nbytes % AES_BLOCK_SIZE;
548
549         /*
550          * Bounce via a buffer unless we are encrypting in place and src/dst
551          * are not pointing to the start of the walk buffer. In that case, we
552          * can do a NEON load/xor/store sequence in place as long as we move
553          * the plain/ciphertext and keystream to the start of the register. If
554          * not, do a memcpy() to the end of the buffer so we can reuse the same
555          * logic.
556          */
557         if (unlikely(tail && (tail == walk.nbytes || src != dst)))
558                 src = memcpy(buf + sizeof(buf) - tail, src, tail);
559
560         pmull_gcm_enc_final(tail, dg, tag, ctx, (u8 *)src, iv,
561                             ctx->rounds, counter);
562         kernel_neon_end();
563
564         if (unlikely(tail && src != dst))
565                 memcpy(dst, src, tail);
566
567         if (walk.nbytes) {
568                 err = skcipher_walk_done(&walk, 0);
569                 if (err)
570                         return err;
571         }
572
573         /* copy authtag to end of dst */
574         scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
575                                  crypto_aead_authsize(aead), 1);
576
577         return 0;
578 }
579
580 static int gcm_decrypt(struct aead_request *req, const u8 *iv, u32 assoclen)
581 {
582         struct crypto_aead *aead = crypto_aead_reqtfm(req);
583         struct gcm_key *ctx = crypto_aead_ctx(aead);
584         int authsize = crypto_aead_authsize(aead);
585         struct skcipher_walk walk;
586         u8 otag[AES_BLOCK_SIZE];
587         u8 buf[AES_BLOCK_SIZE];
588         u32 counter = 2;
589         u64 dg[2] = {};
590         be128 lengths;
591         const u8 *src;
592         u8 *tag, *dst;
593         int tail, err, ret;
594
595         if (WARN_ON_ONCE(!may_use_simd()))
596                 return -EBUSY;
597
598         scatterwalk_map_and_copy(otag, req->src,
599                                  req->assoclen + req->cryptlen - authsize,
600                                  authsize, 0);
601
602         err = skcipher_walk_aead_decrypt(&walk, req, false);
603
604         kernel_neon_begin();
605
606         if (assoclen)
607                 gcm_calculate_auth_mac(req, dg, assoclen);
608
609         src = walk.src.virt.addr;
610         dst = walk.dst.virt.addr;
611
612         while (walk.nbytes >= AES_BLOCK_SIZE) {
613                 int nblocks = walk.nbytes / AES_BLOCK_SIZE;
614
615                 pmull_gcm_decrypt(nblocks, dg, src, ctx, dst, iv,
616                                   ctx->rounds, counter);
617                 counter += nblocks;
618
619                 if (walk.nbytes == walk.total) {
620                         src += nblocks * AES_BLOCK_SIZE;
621                         dst += nblocks * AES_BLOCK_SIZE;
622                         break;
623                 }
624
625                 kernel_neon_end();
626
627                 err = skcipher_walk_done(&walk,
628                                          walk.nbytes % AES_BLOCK_SIZE);
629                 if (err)
630                         return err;
631
632                 src = walk.src.virt.addr;
633                 dst = walk.dst.virt.addr;
634
635                 kernel_neon_begin();
636         }
637
638         lengths.a = cpu_to_be64(assoclen * 8);
639         lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
640
641         tag = (u8 *)&lengths;
642         tail = walk.nbytes % AES_BLOCK_SIZE;
643
644         if (unlikely(tail && (tail == walk.nbytes || src != dst)))
645                 src = memcpy(buf + sizeof(buf) - tail, src, tail);
646
647         ret = pmull_gcm_dec_final(tail, dg, tag, ctx, (u8 *)src, iv,
648                                   ctx->rounds, counter, otag, authsize);
649         kernel_neon_end();
650
651         if (unlikely(tail && src != dst))
652                 memcpy(dst, src, tail);
653
654         if (walk.nbytes) {
655                 err = skcipher_walk_done(&walk, 0);
656                 if (err)
657                         return err;
658         }
659
660         return ret ? -EBADMSG : 0;
661 }
662
663 static int gcm_aes_encrypt(struct aead_request *req)
664 {
665         return gcm_encrypt(req, req->iv, req->assoclen);
666 }
667
668 static int gcm_aes_decrypt(struct aead_request *req)
669 {
670         return gcm_decrypt(req, req->iv, req->assoclen);
671 }
672
673 static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey,
674                           unsigned int keylen)
675 {
676         struct gcm_key *ctx = crypto_aead_ctx(tfm);
677         int err;
678
679         keylen -= RFC4106_NONCE_SIZE;
680         err = gcm_aes_setkey(tfm, inkey, keylen);
681         if (err)
682                 return err;
683
684         memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE);
685         return 0;
686 }
687
688 static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
689 {
690         return crypto_rfc4106_check_authsize(authsize);
691 }
692
693 static int rfc4106_encrypt(struct aead_request *req)
694 {
695         struct crypto_aead *aead = crypto_aead_reqtfm(req);
696         struct gcm_key *ctx = crypto_aead_ctx(aead);
697         u8 iv[GCM_AES_IV_SIZE];
698
699         memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
700         memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
701
702         return crypto_ipsec_check_assoclen(req->assoclen) ?:
703                gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
704 }
705
706 static int rfc4106_decrypt(struct aead_request *req)
707 {
708         struct crypto_aead *aead = crypto_aead_reqtfm(req);
709         struct gcm_key *ctx = crypto_aead_ctx(aead);
710         u8 iv[GCM_AES_IV_SIZE];
711
712         memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
713         memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
714
715         return crypto_ipsec_check_assoclen(req->assoclen) ?:
716                gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
717 }
718
719 static struct aead_alg gcm_aes_algs[] = {{
720         .ivsize                 = GCM_AES_IV_SIZE,
721         .chunksize              = AES_BLOCK_SIZE,
722         .maxauthsize            = AES_BLOCK_SIZE,
723         .setkey                 = gcm_aes_setkey,
724         .setauthsize            = gcm_aes_setauthsize,
725         .encrypt                = gcm_aes_encrypt,
726         .decrypt                = gcm_aes_decrypt,
727
728         .base.cra_name          = "gcm(aes)",
729         .base.cra_driver_name   = "gcm-aes-ce",
730         .base.cra_priority      = 400,
731         .base.cra_blocksize     = 1,
732         .base.cra_ctxsize       = sizeof(struct gcm_key),
733         .base.cra_module        = THIS_MODULE,
734 }, {
735         .ivsize                 = GCM_RFC4106_IV_SIZE,
736         .chunksize              = AES_BLOCK_SIZE,
737         .maxauthsize            = AES_BLOCK_SIZE,
738         .setkey                 = rfc4106_setkey,
739         .setauthsize            = rfc4106_setauthsize,
740         .encrypt                = rfc4106_encrypt,
741         .decrypt                = rfc4106_decrypt,
742
743         .base.cra_name          = "rfc4106(gcm(aes))",
744         .base.cra_driver_name   = "rfc4106-gcm-aes-ce",
745         .base.cra_priority      = 400,
746         .base.cra_blocksize     = 1,
747         .base.cra_ctxsize       = sizeof(struct gcm_key) + RFC4106_NONCE_SIZE,
748         .base.cra_module        = THIS_MODULE,
749 }};
750
751 static int __init ghash_ce_mod_init(void)
752 {
753         int err;
754
755         if (!(elf_hwcap & HWCAP_NEON))
756                 return -ENODEV;
757
758         if (elf_hwcap2 & HWCAP2_PMULL) {
759                 err = crypto_register_aeads(gcm_aes_algs,
760                                             ARRAY_SIZE(gcm_aes_algs));
761                 if (err)
762                         return err;
763                 ghash_alg.base.cra_ctxsize += 3 * sizeof(u64[2]);
764                 static_branch_enable(&use_p64);
765         }
766
767         err = crypto_register_shash(&ghash_alg);
768         if (err)
769                 goto err_aead;
770         err = crypto_register_ahash(&ghash_async_alg);
771         if (err)
772                 goto err_shash;
773
774         return 0;
775
776 err_shash:
777         crypto_unregister_shash(&ghash_alg);
778 err_aead:
779         if (elf_hwcap2 & HWCAP2_PMULL)
780                 crypto_unregister_aeads(gcm_aes_algs,
781                                         ARRAY_SIZE(gcm_aes_algs));
782         return err;
783 }
784
785 static void __exit ghash_ce_mod_exit(void)
786 {
787         crypto_unregister_ahash(&ghash_async_alg);
788         crypto_unregister_shash(&ghash_alg);
789         if (elf_hwcap2 & HWCAP2_PMULL)
790                 crypto_unregister_aeads(gcm_aes_algs,
791                                         ARRAY_SIZE(gcm_aes_algs));
792 }
793
794 module_init(ghash_ce_mod_init);
795 module_exit(ghash_ce_mod_exit);