Merge tag 'tegra-for-5.20-dt-bindings' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / Documentation / filesystems / fsverity.rst
1 .. SPDX-License-Identifier: GPL-2.0
2
3 .. _fsverity:
4
5 =======================================================
6 fs-verity: read-only file-based authenticity protection
7 =======================================================
8
9 Introduction
10 ============
11
12 fs-verity (``fs/verity/``) is a support layer that filesystems can
13 hook into to support transparent integrity and authenticity protection
14 of read-only files.  Currently, it is supported by the ext4 and f2fs
15 filesystems.  Like fscrypt, not too much filesystem-specific code is
16 needed to support fs-verity.
17
18 fs-verity is similar to `dm-verity
19 <https://www.kernel.org/doc/Documentation/device-mapper/verity.txt>`_
20 but works on files rather than block devices.  On regular files on
21 filesystems supporting fs-verity, userspace can execute an ioctl that
22 causes the filesystem to build a Merkle tree for the file and persist
23 it to a filesystem-specific location associated with the file.
24
25 After this, the file is made readonly, and all reads from the file are
26 automatically verified against the file's Merkle tree.  Reads of any
27 corrupted data, including mmap reads, will fail.
28
29 Userspace can use another ioctl to retrieve the root hash (actually
30 the "fs-verity file digest", which is a hash that includes the Merkle
31 tree root hash) that fs-verity is enforcing for the file.  This ioctl
32 executes in constant time, regardless of the file size.
33
34 fs-verity is essentially a way to hash a file in constant time,
35 subject to the caveat that reads which would violate the hash will
36 fail at runtime.
37
38 Use cases
39 =========
40
41 By itself, the base fs-verity feature only provides integrity
42 protection, i.e. detection of accidental (non-malicious) corruption.
43
44 However, because fs-verity makes retrieving the file hash extremely
45 efficient, it's primarily meant to be used as a tool to support
46 authentication (detection of malicious modifications) or auditing
47 (logging file hashes before use).
48
49 Trusted userspace code (e.g. operating system code running on a
50 read-only partition that is itself authenticated by dm-verity) can
51 authenticate the contents of an fs-verity file by using the
52 `FS_IOC_MEASURE_VERITY`_ ioctl to retrieve its hash, then verifying a
53 digital signature of it.
54
55 A standard file hash could be used instead of fs-verity.  However,
56 this is inefficient if the file is large and only a small portion may
57 be accessed.  This is often the case for Android application package
58 (APK) files, for example.  These typically contain many translations,
59 classes, and other resources that are infrequently or even never
60 accessed on a particular device.  It would be slow and wasteful to
61 read and hash the entire file before starting the application.
62
63 Unlike an ahead-of-time hash, fs-verity also re-verifies data each
64 time it's paged in.  This ensures that malicious disk firmware can't
65 undetectably change the contents of the file at runtime.
66
67 fs-verity does not replace or obsolete dm-verity.  dm-verity should
68 still be used on read-only filesystems.  fs-verity is for files that
69 must live on a read-write filesystem because they are independently
70 updated and potentially user-installed, so dm-verity cannot be used.
71
72 The base fs-verity feature is a hashing mechanism only; actually
73 authenticating the files may be done by:
74
75 * Userspace-only
76
77 * Builtin signature verification + userspace policy
78
79   fs-verity optionally supports a simple signature verification
80   mechanism where users can configure the kernel to require that
81   all fs-verity files be signed by a key loaded into a keyring;
82   see `Built-in signature verification`_.
83
84 * Integrity Measurement Architecture (IMA)
85
86   IMA supports including fs-verity file digests and signatures in the
87   IMA measurement list and verifying fs-verity based file signatures
88   stored as security.ima xattrs, based on policy.
89
90
91 User API
92 ========
93
94 FS_IOC_ENABLE_VERITY
95 --------------------
96
97 The FS_IOC_ENABLE_VERITY ioctl enables fs-verity on a file.  It takes
98 in a pointer to a struct fsverity_enable_arg, defined as
99 follows::
100
101     struct fsverity_enable_arg {
102             __u32 version;
103             __u32 hash_algorithm;
104             __u32 block_size;
105             __u32 salt_size;
106             __u64 salt_ptr;
107             __u32 sig_size;
108             __u32 __reserved1;
109             __u64 sig_ptr;
110             __u64 __reserved2[11];
111     };
112
113 This structure contains the parameters of the Merkle tree to build for
114 the file, and optionally contains a signature.  It must be initialized
115 as follows:
116
117 - ``version`` must be 1.
118 - ``hash_algorithm`` must be the identifier for the hash algorithm to
119   use for the Merkle tree, such as FS_VERITY_HASH_ALG_SHA256.  See
120   ``include/uapi/linux/fsverity.h`` for the list of possible values.
121 - ``block_size`` must be the Merkle tree block size.  Currently, this
122   must be equal to the system page size, which is usually 4096 bytes.
123   Other sizes may be supported in the future.  This value is not
124   necessarily the same as the filesystem block size.
125 - ``salt_size`` is the size of the salt in bytes, or 0 if no salt is
126   provided.  The salt is a value that is prepended to every hashed
127   block; it can be used to personalize the hashing for a particular
128   file or device.  Currently the maximum salt size is 32 bytes.
129 - ``salt_ptr`` is the pointer to the salt, or NULL if no salt is
130   provided.
131 - ``sig_size`` is the size of the signature in bytes, or 0 if no
132   signature is provided.  Currently the signature is (somewhat
133   arbitrarily) limited to 16128 bytes.  See `Built-in signature
134   verification`_ for more information.
135 - ``sig_ptr``  is the pointer to the signature, or NULL if no
136   signature is provided.
137 - All reserved fields must be zeroed.
138
139 FS_IOC_ENABLE_VERITY causes the filesystem to build a Merkle tree for
140 the file and persist it to a filesystem-specific location associated
141 with the file, then mark the file as a verity file.  This ioctl may
142 take a long time to execute on large files, and it is interruptible by
143 fatal signals.
144
145 FS_IOC_ENABLE_VERITY checks for write access to the inode.  However,
146 it must be executed on an O_RDONLY file descriptor and no processes
147 can have the file open for writing.  Attempts to open the file for
148 writing while this ioctl is executing will fail with ETXTBSY.  (This
149 is necessary to guarantee that no writable file descriptors will exist
150 after verity is enabled, and to guarantee that the file's contents are
151 stable while the Merkle tree is being built over it.)
152
153 On success, FS_IOC_ENABLE_VERITY returns 0, and the file becomes a
154 verity file.  On failure (including the case of interruption by a
155 fatal signal), no changes are made to the file.
156
157 FS_IOC_ENABLE_VERITY can fail with the following errors:
158
159 - ``EACCES``: the process does not have write access to the file
160 - ``EBADMSG``: the signature is malformed
161 - ``EBUSY``: this ioctl is already running on the file
162 - ``EEXIST``: the file already has verity enabled
163 - ``EFAULT``: the caller provided inaccessible memory
164 - ``EINTR``: the operation was interrupted by a fatal signal
165 - ``EINVAL``: unsupported version, hash algorithm, or block size; or
166   reserved bits are set; or the file descriptor refers to neither a
167   regular file nor a directory.
168 - ``EISDIR``: the file descriptor refers to a directory
169 - ``EKEYREJECTED``: the signature doesn't match the file
170 - ``EMSGSIZE``: the salt or signature is too long
171 - ``ENOKEY``: the fs-verity keyring doesn't contain the certificate
172   needed to verify the signature
173 - ``ENOPKG``: fs-verity recognizes the hash algorithm, but it's not
174   available in the kernel's crypto API as currently configured (e.g.
175   for SHA-512, missing CONFIG_CRYPTO_SHA512).
176 - ``ENOTTY``: this type of filesystem does not implement fs-verity
177 - ``EOPNOTSUPP``: the kernel was not configured with fs-verity
178   support; or the filesystem superblock has not had the 'verity'
179   feature enabled on it; or the filesystem does not support fs-verity
180   on this file.  (See `Filesystem support`_.)
181 - ``EPERM``: the file is append-only; or, a signature is required and
182   one was not provided.
183 - ``EROFS``: the filesystem is read-only
184 - ``ETXTBSY``: someone has the file open for writing.  This can be the
185   caller's file descriptor, another open file descriptor, or the file
186   reference held by a writable memory map.
187
188 FS_IOC_MEASURE_VERITY
189 ---------------------
190
191 The FS_IOC_MEASURE_VERITY ioctl retrieves the digest of a verity file.
192 The fs-verity file digest is a cryptographic digest that identifies
193 the file contents that are being enforced on reads; it is computed via
194 a Merkle tree and is different from a traditional full-file digest.
195
196 This ioctl takes in a pointer to a variable-length structure::
197
198     struct fsverity_digest {
199             __u16 digest_algorithm;
200             __u16 digest_size; /* input/output */
201             __u8 digest[];
202     };
203
204 ``digest_size`` is an input/output field.  On input, it must be
205 initialized to the number of bytes allocated for the variable-length
206 ``digest`` field.
207
208 On success, 0 is returned and the kernel fills in the structure as
209 follows:
210
211 - ``digest_algorithm`` will be the hash algorithm used for the file
212   digest.  It will match ``fsverity_enable_arg::hash_algorithm``.
213 - ``digest_size`` will be the size of the digest in bytes, e.g. 32
214   for SHA-256.  (This can be redundant with ``digest_algorithm``.)
215 - ``digest`` will be the actual bytes of the digest.
216
217 FS_IOC_MEASURE_VERITY is guaranteed to execute in constant time,
218 regardless of the size of the file.
219
220 FS_IOC_MEASURE_VERITY can fail with the following errors:
221
222 - ``EFAULT``: the caller provided inaccessible memory
223 - ``ENODATA``: the file is not a verity file
224 - ``ENOTTY``: this type of filesystem does not implement fs-verity
225 - ``EOPNOTSUPP``: the kernel was not configured with fs-verity
226   support, or the filesystem superblock has not had the 'verity'
227   feature enabled on it.  (See `Filesystem support`_.)
228 - ``EOVERFLOW``: the digest is longer than the specified
229   ``digest_size`` bytes.  Try providing a larger buffer.
230
231 FS_IOC_READ_VERITY_METADATA
232 ---------------------------
233
234 The FS_IOC_READ_VERITY_METADATA ioctl reads verity metadata from a
235 verity file.  This ioctl is available since Linux v5.12.
236
237 This ioctl allows writing a server program that takes a verity file
238 and serves it to a client program, such that the client can do its own
239 fs-verity compatible verification of the file.  This only makes sense
240 if the client doesn't trust the server and if the server needs to
241 provide the storage for the client.
242
243 This is a fairly specialized use case, and most fs-verity users won't
244 need this ioctl.
245
246 This ioctl takes in a pointer to the following structure::
247
248    #define FS_VERITY_METADATA_TYPE_MERKLE_TREE     1
249    #define FS_VERITY_METADATA_TYPE_DESCRIPTOR      2
250    #define FS_VERITY_METADATA_TYPE_SIGNATURE       3
251
252    struct fsverity_read_metadata_arg {
253            __u64 metadata_type;
254            __u64 offset;
255            __u64 length;
256            __u64 buf_ptr;
257            __u64 __reserved;
258    };
259
260 ``metadata_type`` specifies the type of metadata to read:
261
262 - ``FS_VERITY_METADATA_TYPE_MERKLE_TREE`` reads the blocks of the
263   Merkle tree.  The blocks are returned in order from the root level
264   to the leaf level.  Within each level, the blocks are returned in
265   the same order that their hashes are themselves hashed.
266   See `Merkle tree`_ for more information.
267
268 - ``FS_VERITY_METADATA_TYPE_DESCRIPTOR`` reads the fs-verity
269   descriptor.  See `fs-verity descriptor`_.
270
271 - ``FS_VERITY_METADATA_TYPE_SIGNATURE`` reads the signature which was
272   passed to FS_IOC_ENABLE_VERITY, if any.  See `Built-in signature
273   verification`_.
274
275 The semantics are similar to those of ``pread()``.  ``offset``
276 specifies the offset in bytes into the metadata item to read from, and
277 ``length`` specifies the maximum number of bytes to read from the
278 metadata item.  ``buf_ptr`` is the pointer to the buffer to read into,
279 cast to a 64-bit integer.  ``__reserved`` must be 0.  On success, the
280 number of bytes read is returned.  0 is returned at the end of the
281 metadata item.  The returned length may be less than ``length``, for
282 example if the ioctl is interrupted.
283
284 The metadata returned by FS_IOC_READ_VERITY_METADATA isn't guaranteed
285 to be authenticated against the file digest that would be returned by
286 `FS_IOC_MEASURE_VERITY`_, as the metadata is expected to be used to
287 implement fs-verity compatible verification anyway (though absent a
288 malicious disk, the metadata will indeed match).  E.g. to implement
289 this ioctl, the filesystem is allowed to just read the Merkle tree
290 blocks from disk without actually verifying the path to the root node.
291
292 FS_IOC_READ_VERITY_METADATA can fail with the following errors:
293
294 - ``EFAULT``: the caller provided inaccessible memory
295 - ``EINTR``: the ioctl was interrupted before any data was read
296 - ``EINVAL``: reserved fields were set, or ``offset + length``
297   overflowed
298 - ``ENODATA``: the file is not a verity file, or
299   FS_VERITY_METADATA_TYPE_SIGNATURE was requested but the file doesn't
300   have a built-in signature
301 - ``ENOTTY``: this type of filesystem does not implement fs-verity, or
302   this ioctl is not yet implemented on it
303 - ``EOPNOTSUPP``: the kernel was not configured with fs-verity
304   support, or the filesystem superblock has not had the 'verity'
305   feature enabled on it.  (See `Filesystem support`_.)
306
307 FS_IOC_GETFLAGS
308 ---------------
309
310 The existing ioctl FS_IOC_GETFLAGS (which isn't specific to fs-verity)
311 can also be used to check whether a file has fs-verity enabled or not.
312 To do so, check for FS_VERITY_FL (0x00100000) in the returned flags.
313
314 The verity flag is not settable via FS_IOC_SETFLAGS.  You must use
315 FS_IOC_ENABLE_VERITY instead, since parameters must be provided.
316
317 statx
318 -----
319
320 Since Linux v5.5, the statx() system call sets STATX_ATTR_VERITY if
321 the file has fs-verity enabled.  This can perform better than
322 FS_IOC_GETFLAGS and FS_IOC_MEASURE_VERITY because it doesn't require
323 opening the file, and opening verity files can be expensive.
324
325 Accessing verity files
326 ======================
327
328 Applications can transparently access a verity file just like a
329 non-verity one, with the following exceptions:
330
331 - Verity files are readonly.  They cannot be opened for writing or
332   truncate()d, even if the file mode bits allow it.  Attempts to do
333   one of these things will fail with EPERM.  However, changes to
334   metadata such as owner, mode, timestamps, and xattrs are still
335   allowed, since these are not measured by fs-verity.  Verity files
336   can also still be renamed, deleted, and linked to.
337
338 - Direct I/O is not supported on verity files.  Attempts to use direct
339   I/O on such files will fall back to buffered I/O.
340
341 - DAX (Direct Access) is not supported on verity files, because this
342   would circumvent the data verification.
343
344 - Reads of data that doesn't match the verity Merkle tree will fail
345   with EIO (for read()) or SIGBUS (for mmap() reads).
346
347 - If the sysctl "fs.verity.require_signatures" is set to 1 and the
348   file is not signed by a key in the fs-verity keyring, then opening
349   the file will fail.  See `Built-in signature verification`_.
350
351 Direct access to the Merkle tree is not supported.  Therefore, if a
352 verity file is copied, or is backed up and restored, then it will lose
353 its "verity"-ness.  fs-verity is primarily meant for files like
354 executables that are managed by a package manager.
355
356 File digest computation
357 =======================
358
359 This section describes how fs-verity hashes the file contents using a
360 Merkle tree to produce the digest which cryptographically identifies
361 the file contents.  This algorithm is the same for all filesystems
362 that support fs-verity.
363
364 Userspace only needs to be aware of this algorithm if it needs to
365 compute fs-verity file digests itself, e.g. in order to sign files.
366
367 .. _fsverity_merkle_tree:
368
369 Merkle tree
370 -----------
371
372 The file contents is divided into blocks, where the block size is
373 configurable but is usually 4096 bytes.  The end of the last block is
374 zero-padded if needed.  Each block is then hashed, producing the first
375 level of hashes.  Then, the hashes in this first level are grouped
376 into 'blocksize'-byte blocks (zero-padding the ends as needed) and
377 these blocks are hashed, producing the second level of hashes.  This
378 proceeds up the tree until only a single block remains.  The hash of
379 this block is the "Merkle tree root hash".
380
381 If the file fits in one block and is nonempty, then the "Merkle tree
382 root hash" is simply the hash of the single data block.  If the file
383 is empty, then the "Merkle tree root hash" is all zeroes.
384
385 The "blocks" here are not necessarily the same as "filesystem blocks".
386
387 If a salt was specified, then it's zero-padded to the closest multiple
388 of the input size of the hash algorithm's compression function, e.g.
389 64 bytes for SHA-256 or 128 bytes for SHA-512.  The padded salt is
390 prepended to every data or Merkle tree block that is hashed.
391
392 The purpose of the block padding is to cause every hash to be taken
393 over the same amount of data, which simplifies the implementation and
394 keeps open more possibilities for hardware acceleration.  The purpose
395 of the salt padding is to make the salting "free" when the salted hash
396 state is precomputed, then imported for each hash.
397
398 Example: in the recommended configuration of SHA-256 and 4K blocks,
399 128 hash values fit in each block.  Thus, each level of the Merkle
400 tree is approximately 128 times smaller than the previous, and for
401 large files the Merkle tree's size converges to approximately 1/127 of
402 the original file size.  However, for small files, the padding is
403 significant, making the space overhead proportionally more.
404
405 .. _fsverity_descriptor:
406
407 fs-verity descriptor
408 --------------------
409
410 By itself, the Merkle tree root hash is ambiguous.  For example, it
411 can't a distinguish a large file from a small second file whose data
412 is exactly the top-level hash block of the first file.  Ambiguities
413 also arise from the convention of padding to the next block boundary.
414
415 To solve this problem, the fs-verity file digest is actually computed
416 as a hash of the following structure, which contains the Merkle tree
417 root hash as well as other fields such as the file size::
418
419     struct fsverity_descriptor {
420             __u8 version;           /* must be 1 */
421             __u8 hash_algorithm;    /* Merkle tree hash algorithm */
422             __u8 log_blocksize;     /* log2 of size of data and tree blocks */
423             __u8 salt_size;         /* size of salt in bytes; 0 if none */
424             __le32 __reserved_0x04; /* must be 0 */
425             __le64 data_size;       /* size of file the Merkle tree is built over */
426             __u8 root_hash[64];     /* Merkle tree root hash */
427             __u8 salt[32];          /* salt prepended to each hashed block */
428             __u8 __reserved[144];   /* must be 0's */
429     };
430
431 Built-in signature verification
432 ===============================
433
434 With CONFIG_FS_VERITY_BUILTIN_SIGNATURES=y, fs-verity supports putting
435 a portion of an authentication policy (see `Use cases`_) in the
436 kernel.  Specifically, it adds support for:
437
438 1. At fs-verity module initialization time, a keyring ".fs-verity" is
439    created.  The root user can add trusted X.509 certificates to this
440    keyring using the add_key() system call, then (when done)
441    optionally use keyctl_restrict_keyring() to prevent additional
442    certificates from being added.
443
444 2. `FS_IOC_ENABLE_VERITY`_ accepts a pointer to a PKCS#7 formatted
445    detached signature in DER format of the file's fs-verity digest.
446    On success, this signature is persisted alongside the Merkle tree.
447    Then, any time the file is opened, the kernel will verify the
448    file's actual digest against this signature, using the certificates
449    in the ".fs-verity" keyring.
450
451 3. A new sysctl "fs.verity.require_signatures" is made available.
452    When set to 1, the kernel requires that all verity files have a
453    correctly signed digest as described in (2).
454
455 fs-verity file digests must be signed in the following format, which
456 is similar to the structure used by `FS_IOC_MEASURE_VERITY`_::
457
458     struct fsverity_formatted_digest {
459             char magic[8];                  /* must be "FSVerity" */
460             __le16 digest_algorithm;
461             __le16 digest_size;
462             __u8 digest[];
463     };
464
465 fs-verity's built-in signature verification support is meant as a
466 relatively simple mechanism that can be used to provide some level of
467 authenticity protection for verity files, as an alternative to doing
468 the signature verification in userspace or using IMA-appraisal.
469 However, with this mechanism, userspace programs still need to check
470 that the verity bit is set, and there is no protection against verity
471 files being swapped around.
472
473 Filesystem support
474 ==================
475
476 fs-verity is currently supported by the ext4 and f2fs filesystems.
477 The CONFIG_FS_VERITY kconfig option must be enabled to use fs-verity
478 on either filesystem.
479
480 ``include/linux/fsverity.h`` declares the interface between the
481 ``fs/verity/`` support layer and filesystems.  Briefly, filesystems
482 must provide an ``fsverity_operations`` structure that provides
483 methods to read and write the verity metadata to a filesystem-specific
484 location, including the Merkle tree blocks and
485 ``fsverity_descriptor``.  Filesystems must also call functions in
486 ``fs/verity/`` at certain times, such as when a file is opened or when
487 pages have been read into the pagecache.  (See `Verifying data`_.)
488
489 ext4
490 ----
491
492 ext4 supports fs-verity since Linux v5.4 and e2fsprogs v1.45.2.
493
494 To create verity files on an ext4 filesystem, the filesystem must have
495 been formatted with ``-O verity`` or had ``tune2fs -O verity`` run on
496 it.  "verity" is an RO_COMPAT filesystem feature, so once set, old
497 kernels will only be able to mount the filesystem readonly, and old
498 versions of e2fsck will be unable to check the filesystem.  Moreover,
499 currently ext4 only supports mounting a filesystem with the "verity"
500 feature when its block size is equal to PAGE_SIZE (often 4096 bytes).
501
502 ext4 sets the EXT4_VERITY_FL on-disk inode flag on verity files.  It
503 can only be set by `FS_IOC_ENABLE_VERITY`_, and it cannot be cleared.
504
505 ext4 also supports encryption, which can be used simultaneously with
506 fs-verity.  In this case, the plaintext data is verified rather than
507 the ciphertext.  This is necessary in order to make the fs-verity file
508 digest meaningful, since every file is encrypted differently.
509
510 ext4 stores the verity metadata (Merkle tree and fsverity_descriptor)
511 past the end of the file, starting at the first 64K boundary beyond
512 i_size.  This approach works because (a) verity files are readonly,
513 and (b) pages fully beyond i_size aren't visible to userspace but can
514 be read/written internally by ext4 with only some relatively small
515 changes to ext4.  This approach avoids having to depend on the
516 EA_INODE feature and on rearchitecturing ext4's xattr support to
517 support paging multi-gigabyte xattrs into memory, and to support
518 encrypting xattrs.  Note that the verity metadata *must* be encrypted
519 when the file is, since it contains hashes of the plaintext data.
520
521 Currently, ext4 verity only supports the case where the Merkle tree
522 block size, filesystem block size, and page size are all the same.  It
523 also only supports extent-based files.
524
525 f2fs
526 ----
527
528 f2fs supports fs-verity since Linux v5.4 and f2fs-tools v1.11.0.
529
530 To create verity files on an f2fs filesystem, the filesystem must have
531 been formatted with ``-O verity``.
532
533 f2fs sets the FADVISE_VERITY_BIT on-disk inode flag on verity files.
534 It can only be set by `FS_IOC_ENABLE_VERITY`_, and it cannot be
535 cleared.
536
537 Like ext4, f2fs stores the verity metadata (Merkle tree and
538 fsverity_descriptor) past the end of the file, starting at the first
539 64K boundary beyond i_size.  See explanation for ext4 above.
540 Moreover, f2fs supports at most 4096 bytes of xattr entries per inode
541 which wouldn't be enough for even a single Merkle tree block.
542
543 Currently, f2fs verity only supports a Merkle tree block size of 4096.
544 Also, f2fs doesn't support enabling verity on files that currently
545 have atomic or volatile writes pending.
546
547 Implementation details
548 ======================
549
550 Verifying data
551 --------------
552
553 fs-verity ensures that all reads of a verity file's data are verified,
554 regardless of which syscall is used to do the read (e.g. mmap(),
555 read(), pread()) and regardless of whether it's the first read or a
556 later read (unless the later read can return cached data that was
557 already verified).  Below, we describe how filesystems implement this.
558
559 Pagecache
560 ~~~~~~~~~
561
562 For filesystems using Linux's pagecache, the ``->read_folio()`` and
563 ``->readahead()`` methods must be modified to verify pages before they
564 are marked Uptodate.  Merely hooking ``->read_iter()`` would be
565 insufficient, since ``->read_iter()`` is not used for memory maps.
566
567 Therefore, fs/verity/ provides a function fsverity_verify_page() which
568 verifies a page that has been read into the pagecache of a verity
569 inode, but is still locked and not Uptodate, so it's not yet readable
570 by userspace.  As needed to do the verification,
571 fsverity_verify_page() will call back into the filesystem to read
572 Merkle tree pages via fsverity_operations::read_merkle_tree_page().
573
574 fsverity_verify_page() returns false if verification failed; in this
575 case, the filesystem must not set the page Uptodate.  Following this,
576 as per the usual Linux pagecache behavior, attempts by userspace to
577 read() from the part of the file containing the page will fail with
578 EIO, and accesses to the page within a memory map will raise SIGBUS.
579
580 fsverity_verify_page() currently only supports the case where the
581 Merkle tree block size is equal to PAGE_SIZE (often 4096 bytes).
582
583 In principle, fsverity_verify_page() verifies the entire path in the
584 Merkle tree from the data page to the root hash.  However, for
585 efficiency the filesystem may cache the hash pages.  Therefore,
586 fsverity_verify_page() only ascends the tree reading hash pages until
587 an already-verified hash page is seen, as indicated by the PageChecked
588 bit being set.  It then verifies the path to that page.
589
590 This optimization, which is also used by dm-verity, results in
591 excellent sequential read performance.  This is because usually (e.g.
592 127 in 128 times for 4K blocks and SHA-256) the hash page from the
593 bottom level of the tree will already be cached and checked from
594 reading a previous data page.  However, random reads perform worse.
595
596 Block device based filesystems
597 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
598
599 Block device based filesystems (e.g. ext4 and f2fs) in Linux also use
600 the pagecache, so the above subsection applies too.  However, they
601 also usually read many pages from a file at once, grouped into a
602 structure called a "bio".  To make it easier for these types of
603 filesystems to support fs-verity, fs/verity/ also provides a function
604 fsverity_verify_bio() which verifies all pages in a bio.
605
606 ext4 and f2fs also support encryption.  If a verity file is also
607 encrypted, the pages must be decrypted before being verified.  To
608 support this, these filesystems allocate a "post-read context" for
609 each bio and store it in ``->bi_private``::
610
611     struct bio_post_read_ctx {
612            struct bio *bio;
613            struct work_struct work;
614            unsigned int cur_step;
615            unsigned int enabled_steps;
616     };
617
618 ``enabled_steps`` is a bitmask that specifies whether decryption,
619 verity, or both is enabled.  After the bio completes, for each needed
620 postprocessing step the filesystem enqueues the bio_post_read_ctx on a
621 workqueue, and then the workqueue work does the decryption or
622 verification.  Finally, pages where no decryption or verity error
623 occurred are marked Uptodate, and the pages are unlocked.
624
625 Files on ext4 and f2fs may contain holes.  Normally, ``->readahead()``
626 simply zeroes holes and sets the corresponding pages Uptodate; no bios
627 are issued.  To prevent this case from bypassing fs-verity, these
628 filesystems use fsverity_verify_page() to verify hole pages.
629
630 ext4 and f2fs disable direct I/O on verity files, since otherwise
631 direct I/O would bypass fs-verity.  (They also do the same for
632 encrypted files.)
633
634 Userspace utility
635 =================
636
637 This document focuses on the kernel, but a userspace utility for
638 fs-verity can be found at:
639
640         https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/fsverity-utils.git
641
642 See the README.md file in the fsverity-utils source tree for details,
643 including examples of setting up fs-verity protected files.
644
645 Tests
646 =====
647
648 To test fs-verity, use xfstests.  For example, using `kvm-xfstests
649 <https://github.com/tytso/xfstests-bld/blob/master/Documentation/kvm-quickstart.md>`_::
650
651     kvm-xfstests -c ext4,f2fs -g verity
652
653 FAQ
654 ===
655
656 This section answers frequently asked questions about fs-verity that
657 weren't already directly answered in other parts of this document.
658
659 :Q: Why isn't fs-verity part of IMA?
660 :A: fs-verity and IMA (Integrity Measurement Architecture) have
661     different focuses.  fs-verity is a filesystem-level mechanism for
662     hashing individual files using a Merkle tree.  In contrast, IMA
663     specifies a system-wide policy that specifies which files are
664     hashed and what to do with those hashes, such as log them,
665     authenticate them, or add them to a measurement list.
666
667     IMA supports the fs-verity hashing mechanism as an alternative
668     to full file hashes, for those who want the performance and
669     security benefits of the Merkle tree based hash.  However, it
670     doesn't make sense to force all uses of fs-verity to be through
671     IMA.  fs-verity already meets many users' needs even as a
672     standalone filesystem feature, and it's testable like other
673     filesystem features e.g. with xfstests.
674
675 :Q: Isn't fs-verity useless because the attacker can just modify the
676     hashes in the Merkle tree, which is stored on-disk?
677 :A: To verify the authenticity of an fs-verity file you must verify
678     the authenticity of the "fs-verity file digest", which
679     incorporates the root hash of the Merkle tree.  See `Use cases`_.
680
681 :Q: Isn't fs-verity useless because the attacker can just replace a
682     verity file with a non-verity one?
683 :A: See `Use cases`_.  In the initial use case, it's really trusted
684     userspace code that authenticates the files; fs-verity is just a
685     tool to do this job efficiently and securely.  The trusted
686     userspace code will consider non-verity files to be inauthentic.
687
688 :Q: Why does the Merkle tree need to be stored on-disk?  Couldn't you
689     store just the root hash?
690 :A: If the Merkle tree wasn't stored on-disk, then you'd have to
691     compute the entire tree when the file is first accessed, even if
692     just one byte is being read.  This is a fundamental consequence of
693     how Merkle tree hashing works.  To verify a leaf node, you need to
694     verify the whole path to the root hash, including the root node
695     (the thing which the root hash is a hash of).  But if the root
696     node isn't stored on-disk, you have to compute it by hashing its
697     children, and so on until you've actually hashed the entire file.
698
699     That defeats most of the point of doing a Merkle tree-based hash,
700     since if you have to hash the whole file ahead of time anyway,
701     then you could simply do sha256(file) instead.  That would be much
702     simpler, and a bit faster too.
703
704     It's true that an in-memory Merkle tree could still provide the
705     advantage of verification on every read rather than just on the
706     first read.  However, it would be inefficient because every time a
707     hash page gets evicted (you can't pin the entire Merkle tree into
708     memory, since it may be very large), in order to restore it you
709     again need to hash everything below it in the tree.  This again
710     defeats most of the point of doing a Merkle tree-based hash, since
711     a single block read could trigger re-hashing gigabytes of data.
712
713 :Q: But couldn't you store just the leaf nodes and compute the rest?
714 :A: See previous answer; this really just moves up one level, since
715     one could alternatively interpret the data blocks as being the
716     leaf nodes of the Merkle tree.  It's true that the tree can be
717     computed much faster if the leaf level is stored rather than just
718     the data, but that's only because each level is less than 1% the
719     size of the level below (assuming the recommended settings of
720     SHA-256 and 4K blocks).  For the exact same reason, by storing
721     "just the leaf nodes" you'd already be storing over 99% of the
722     tree, so you might as well simply store the whole tree.
723
724 :Q: Can the Merkle tree be built ahead of time, e.g. distributed as
725     part of a package that is installed to many computers?
726 :A: This isn't currently supported.  It was part of the original
727     design, but was removed to simplify the kernel UAPI and because it
728     wasn't a critical use case.  Files are usually installed once and
729     used many times, and cryptographic hashing is somewhat fast on
730     most modern processors.
731
732 :Q: Why doesn't fs-verity support writes?
733 :A: Write support would be very difficult and would require a
734     completely different design, so it's well outside the scope of
735     fs-verity.  Write support would require:
736
737     - A way to maintain consistency between the data and hashes,
738       including all levels of hashes, since corruption after a crash
739       (especially of potentially the entire file!) is unacceptable.
740       The main options for solving this are data journalling,
741       copy-on-write, and log-structured volume.  But it's very hard to
742       retrofit existing filesystems with new consistency mechanisms.
743       Data journalling is available on ext4, but is very slow.
744
745     - Rebuilding the Merkle tree after every write, which would be
746       extremely inefficient.  Alternatively, a different authenticated
747       dictionary structure such as an "authenticated skiplist" could
748       be used.  However, this would be far more complex.
749
750     Compare it to dm-verity vs. dm-integrity.  dm-verity is very
751     simple: the kernel just verifies read-only data against a
752     read-only Merkle tree.  In contrast, dm-integrity supports writes
753     but is slow, is much more complex, and doesn't actually support
754     full-device authentication since it authenticates each sector
755     independently, i.e. there is no "root hash".  It doesn't really
756     make sense for the same device-mapper target to support these two
757     very different cases; the same applies to fs-verity.
758
759 :Q: Since verity files are immutable, why isn't the immutable bit set?
760 :A: The existing "immutable" bit (FS_IMMUTABLE_FL) already has a
761     specific set of semantics which not only make the file contents
762     read-only, but also prevent the file from being deleted, renamed,
763     linked to, or having its owner or mode changed.  These extra
764     properties are unwanted for fs-verity, so reusing the immutable
765     bit isn't appropriate.
766
767 :Q: Why does the API use ioctls instead of setxattr() and getxattr()?
768 :A: Abusing the xattr interface for basically arbitrary syscalls is
769     heavily frowned upon by most of the Linux filesystem developers.
770     An xattr should really just be an xattr on-disk, not an API to
771     e.g. magically trigger construction of a Merkle tree.
772
773 :Q: Does fs-verity support remote filesystems?
774 :A: Only ext4 and f2fs support is implemented currently, but in
775     principle any filesystem that can store per-file verity metadata
776     can support fs-verity, regardless of whether it's local or remote.
777     Some filesystems may have fewer options of where to store the
778     verity metadata; one possibility is to store it past the end of
779     the file and "hide" it from userspace by manipulating i_size.  The
780     data verification functions provided by ``fs/verity/`` also assume
781     that the filesystem uses the Linux pagecache, but both local and
782     remote filesystems normally do so.
783
784 :Q: Why is anything filesystem-specific at all?  Shouldn't fs-verity
785     be implemented entirely at the VFS level?
786 :A: There are many reasons why this is not possible or would be very
787     difficult, including the following:
788
789     - To prevent bypassing verification, pages must not be marked
790       Uptodate until they've been verified.  Currently, each
791       filesystem is responsible for marking pages Uptodate via
792       ``->readahead()``.  Therefore, currently it's not possible for
793       the VFS to do the verification on its own.  Changing this would
794       require significant changes to the VFS and all filesystems.
795
796     - It would require defining a filesystem-independent way to store
797       the verity metadata.  Extended attributes don't work for this
798       because (a) the Merkle tree may be gigabytes, but many
799       filesystems assume that all xattrs fit into a single 4K
800       filesystem block, and (b) ext4 and f2fs encryption doesn't
801       encrypt xattrs, yet the Merkle tree *must* be encrypted when the
802       file contents are, because it stores hashes of the plaintext
803       file contents.
804
805       So the verity metadata would have to be stored in an actual
806       file.  Using a separate file would be very ugly, since the
807       metadata is fundamentally part of the file to be protected, and
808       it could cause problems where users could delete the real file
809       but not the metadata file or vice versa.  On the other hand,
810       having it be in the same file would break applications unless
811       filesystems' notion of i_size were divorced from the VFS's,
812       which would be complex and require changes to all filesystems.
813
814     - It's desirable that FS_IOC_ENABLE_VERITY uses the filesystem's
815       transaction mechanism so that either the file ends up with
816       verity enabled, or no changes were made.  Allowing intermediate
817       states to occur after a crash may cause problems.