dt-bindings: Fix phandle-array issues in the idle-states bindings
[linux-2.6-microblaze.git] / Documentation / devicetree / bindings / cpu / idle-states.yaml
1 # SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 %YAML 1.2
3 ---
4 $id: http://devicetree.org/schemas/cpu/idle-states.yaml#
5 $schema: http://devicetree.org/meta-schemas/core.yaml#
6
7 title: Idle states binding description
8
9 maintainers:
10   - Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
11   - Anup Patel <anup@brainfault.org>
12
13 description: |+
14   ==========================================
15   1 - Introduction
16   ==========================================
17
18   ARM and RISC-V systems contain HW capable of managing power consumption
19   dynamically, where cores can be put in different low-power states (ranging
20   from simple wfi to power gating) according to OS PM policies. The CPU states
21   representing the range of dynamic idle states that a processor can enter at
22   run-time, can be specified through device tree bindings representing the
23   parameters required to enter/exit specific idle states on a given processor.
24
25   ==========================================
26   2 - ARM idle states
27   ==========================================
28
29   According to the Server Base System Architecture document (SBSA, [3]), the
30   power states an ARM CPU can be put into are identified by the following list:
31
32   - Running
33   - Idle_standby
34   - Idle_retention
35   - Sleep
36   - Off
37
38   The power states described in the SBSA document define the basic CPU states on
39   top of which ARM platforms implement power management schemes that allow an OS
40   PM implementation to put the processor in different idle states (which include
41   states listed above; "off" state is not an idle state since it does not have
42   wake-up capabilities, hence it is not considered in this document).
43
44   Idle state parameters (e.g. entry latency) are platform specific and need to
45   be characterized with bindings that provide the required information to OS PM
46   code so that it can build the required tables and use them at runtime.
47
48   The device tree binding definition for ARM idle states is the subject of this
49   document.
50
51   ==========================================
52   3 - RISC-V idle states
53   ==========================================
54
55   On RISC-V systems, the HARTs (or CPUs) [6] can be put in platform specific
56   suspend (or idle) states (ranging from simple WFI, power gating, etc). The
57   RISC-V SBI v0.3 (or higher) [7] hart state management extension provides a
58   standard mechanism for OS to request HART state transitions.
59
60   The platform specific suspend (or idle) states of a hart can be either
61   retentive or non-rententive in nature. A retentive suspend state will
62   preserve HART registers and CSR values for all privilege modes whereas
63   a non-retentive suspend state will not preserve HART registers and CSR
64   values.
65
66   ===========================================
67   4 - idle-states definitions
68   ===========================================
69
70   Idle states are characterized for a specific system through a set of
71   timing and energy related properties, that underline the HW behaviour
72   triggered upon idle states entry and exit.
73
74   The following diagram depicts the CPU execution phases and related timing
75   properties required to enter and exit an idle state:
76
77   ..__[EXEC]__|__[PREP]__|__[ENTRY]__|__[IDLE]__|__[EXIT]__|__[EXEC]__..
78               |          |           |          |          |
79
80               |<------ entry ------->|
81               |       latency        |
82                                                 |<- exit ->|
83                                                 |  latency |
84               |<-------- min-residency -------->|
85                          |<-------  wakeup-latency ------->|
86
87       Diagram 1: CPU idle state execution phases
88
89   EXEC:  Normal CPU execution.
90
91   PREP:  Preparation phase before committing the hardware to idle mode
92     like cache flushing. This is abortable on pending wake-up
93     event conditions. The abort latency is assumed to be negligible
94     (i.e. less than the ENTRY + EXIT duration). If aborted, CPU
95     goes back to EXEC. This phase is optional. If not abortable,
96     this should be included in the ENTRY phase instead.
97
98   ENTRY:  The hardware is committed to idle mode. This period must run
99     to completion up to IDLE before anything else can happen.
100
101   IDLE:  This is the actual energy-saving idle period. This may last
102     between 0 and infinite time, until a wake-up event occurs.
103
104   EXIT:  Period during which the CPU is brought back to operational
105     mode (EXEC).
106
107   entry-latency: Worst case latency required to enter the idle state. The
108   exit-latency may be guaranteed only after entry-latency has passed.
109
110   min-residency: Minimum period, including preparation and entry, for a given
111   idle state to be worthwhile energywise.
112
113   wakeup-latency: Maximum delay between the signaling of a wake-up event and the
114   CPU being able to execute normal code again. If not specified, this is assumed
115   to be entry-latency + exit-latency.
116
117   These timing parameters can be used by an OS in different circumstances.
118
119   An idle CPU requires the expected min-residency time to select the most
120   appropriate idle state based on the expected expiry time of the next IRQ
121   (i.e. wake-up) that causes the CPU to return to the EXEC phase.
122
123   An operating system scheduler may need to compute the shortest wake-up delay
124   for CPUs in the system by detecting how long will it take to get a CPU out
125   of an idle state, e.g.:
126
127   wakeup-delay = exit-latency + max(entry-latency - (now - entry-timestamp), 0)
128
129   In other words, the scheduler can make its scheduling decision by selecting
130   (e.g. waking-up) the CPU with the shortest wake-up delay.
131   The wake-up delay must take into account the entry latency if that period
132   has not expired. The abortable nature of the PREP period can be ignored
133   if it cannot be relied upon (e.g. the PREP deadline may occur much sooner than
134   the worst case since it depends on the CPU operating conditions, i.e. caches
135   state).
136
137   An OS has to reliably probe the wakeup-latency since some devices can enforce
138   latency constraint guarantees to work properly, so the OS has to detect the
139   worst case wake-up latency it can incur if a CPU is allowed to enter an
140   idle state, and possibly to prevent that to guarantee reliable device
141   functioning.
142
143   The min-residency time parameter deserves further explanation since it is
144   expressed in time units but must factor in energy consumption coefficients.
145
146   The energy consumption of a cpu when it enters a power state can be roughly
147   characterised by the following graph:
148
149                  |
150                  |
151                  |
152              e   |
153              n   |                                      /---
154              e   |                               /------
155              r   |                        /------
156              g   |                  /-----
157              y   |           /------
158                  |       ----
159                  |      /|
160                  |     / |
161                  |    /  |
162                  |   /   |
163                  |  /    |
164                  | /     |
165                  |/      |
166             -----|-------+----------------------------------
167                 0|       1                              time(ms)
168
169       Graph 1: Energy vs time example
170
171   The graph is split in two parts delimited by time 1ms on the X-axis.
172   The graph curve with X-axis values = { x | 0 < x < 1ms } has a steep slope
173   and denotes the energy costs incurred while entering and leaving the idle
174   state.
175   The graph curve in the area delimited by X-axis values = {x | x > 1ms } has
176   shallower slope and essentially represents the energy consumption of the idle
177   state.
178
179   min-residency is defined for a given idle state as the minimum expected
180   residency time for a state (inclusive of preparation and entry) after
181   which choosing that state become the most energy efficient option. A good
182   way to visualise this, is by taking the same graph above and comparing some
183   states energy consumptions plots.
184
185   For sake of simplicity, let's consider a system with two idle states IDLE1,
186   and IDLE2:
187
188             |
189             |
190             |
191             |                                                  /-- IDLE1
192          e  |                                              /---
193          n  |                                         /----
194          e  |                                     /---
195          r  |                                /-----/--------- IDLE2
196          g  |                    /-------/---------
197          y  |        ------------    /---|
198             |       /           /----    |
199             |      /        /---         |
200             |     /    /----             |
201             |    / /---                  |
202             |   ---                      |
203             |  /                         |
204             | /                          |
205             |/                           |                  time
206          ---/----------------------------+------------------------
207             |IDLE1-energy < IDLE2-energy | IDLE2-energy < IDLE1-energy
208                                          |
209                                   IDLE2-min-residency
210
211       Graph 2: idle states min-residency example
212
213   In graph 2 above, that takes into account idle states entry/exit energy
214   costs, it is clear that if the idle state residency time (i.e. time till next
215   wake-up IRQ) is less than IDLE2-min-residency, IDLE1 is the better idle state
216   choice energywise.
217
218   This is mainly down to the fact that IDLE1 entry/exit energy costs are lower
219   than IDLE2.
220
221   However, the lower power consumption (i.e. shallower energy curve slope) of
222   idle state IDLE2 implies that after a suitable time, IDLE2 becomes more energy
223   efficient.
224
225   The time at which IDLE2 becomes more energy efficient than IDLE1 (and other
226   shallower states in a system with multiple idle states) is defined
227   IDLE2-min-residency and corresponds to the time when energy consumption of
228   IDLE1 and IDLE2 states breaks even.
229
230   The definitions provided in this section underpin the idle states
231   properties specification that is the subject of the following sections.
232
233   ===========================================
234   5 - idle-states node
235   ===========================================
236
237   The processor idle states are defined within the idle-states node, which is
238   a direct child of the cpus node [1] and provides a container where the
239   processor idle states, defined as device tree nodes, are listed.
240
241   On ARM systems, it is a container of processor idle states nodes. If the
242   system does not provide CPU power management capabilities, or the processor
243   just supports idle_standby, an idle-states node is not required.
244
245   ===========================================
246   6 - References
247   ===========================================
248
249   [1] ARM Linux Kernel documentation - CPUs bindings
250       Documentation/devicetree/bindings/arm/cpus.yaml
251
252   [2] ARM Linux Kernel documentation - PSCI bindings
253       Documentation/devicetree/bindings/arm/psci.yaml
254
255   [3] ARM Server Base System Architecture (SBSA)
256       http://infocenter.arm.com/help/index.jsp
257
258   [4] ARM Architecture Reference Manuals
259       http://infocenter.arm.com/help/index.jsp
260
261   [5] ARM Linux Kernel documentation - Booting AArch64 Linux
262       Documentation/arm64/booting.rst
263
264   [6] RISC-V Linux Kernel documentation - CPUs bindings
265       Documentation/devicetree/bindings/riscv/cpus.yaml
266
267   [7] RISC-V Supervisor Binary Interface (SBI)
268       http://github.com/riscv/riscv-sbi-doc/riscv-sbi.adoc
269
270 properties:
271   $nodename:
272     const: idle-states
273
274   entry-method:
275     description: |
276       Usage and definition depend on ARM architecture version.
277
278       On ARM v8 64-bit this property is required.
279       On ARM 32-bit systems this property is optional
280
281       This assumes that the "enable-method" property is set to "psci" in the cpu
282       node[5] that is responsible for setting up CPU idle management in the OS
283       implementation.
284     const: psci
285
286 patternProperties:
287   "^(cpu|cluster)-":
288     type: object
289     description: |
290       Each state node represents an idle state description and must be defined
291       as follows.
292
293       The idle state entered by executing the wfi instruction (idle_standby
294       SBSA,[3][4]) is considered standard on all ARM and RISC-V platforms and
295       therefore must not be listed.
296
297       In addition to the properties listed above, a state node may require
298       additional properties specific to the entry-method defined in the
299       idle-states node. Please refer to the entry-method bindings
300       documentation for properties definitions.
301
302     properties:
303       compatible:
304         enum:
305           - arm,idle-state
306           - riscv,idle-state
307
308       arm,psci-suspend-param:
309         $ref: /schemas/types.yaml#/definitions/uint32
310         description: |
311           power_state parameter to pass to the ARM PSCI suspend call.
312
313           Device tree nodes that require usage of PSCI CPU_SUSPEND function
314           (i.e. idle states node with entry-method property is set to "psci")
315           must specify this property.
316
317       riscv,sbi-suspend-param:
318         $ref: /schemas/types.yaml#/definitions/uint32
319         description: |
320           suspend_type parameter to pass to the RISC-V SBI HSM suspend call.
321
322           This property is required in idle state nodes of device tree meant
323           for RISC-V systems. For more details on the suspend_type parameter
324           refer the SBI specifiation v0.3 (or higher) [7].
325
326       local-timer-stop:
327         description:
328           If present the CPU local timer control logic is
329              lost on state entry, otherwise it is retained.
330         type: boolean
331
332       entry-latency-us:
333         description:
334           Worst case latency in microseconds required to enter the idle state.
335
336       exit-latency-us:
337         description:
338           Worst case latency in microseconds required to exit the idle state.
339           The exit-latency-us duration may be guaranteed only after
340           entry-latency-us has passed.
341
342       min-residency-us:
343         description:
344           Minimum residency duration in microseconds, inclusive of preparation
345           and entry, for this idle state to be considered worthwhile energy wise
346           (refer to section 2 of this document for a complete description).
347
348       wakeup-latency-us:
349         description: |
350           Maximum delay between the signaling of a wake-up event and the CPU
351           being able to execute normal code again. If omitted, this is assumed
352           to be equal to:
353
354             entry-latency-us + exit-latency-us
355
356           It is important to supply this value on systems where the duration of
357           PREP phase (see diagram 1, section 2) is non-neglibigle. In such
358           systems entry-latency-us + exit-latency-us will exceed
359           wakeup-latency-us by this duration.
360
361       idle-state-name:
362         $ref: /schemas/types.yaml#/definitions/string
363         description:
364           A string used as a descriptive name for the idle state.
365
366     additionalProperties: false
367
368     required:
369       - compatible
370       - entry-latency-us
371       - exit-latency-us
372       - min-residency-us
373
374 additionalProperties: false
375
376 examples:
377   - |
378
379     cpus {
380         #size-cells = <0>;
381         #address-cells = <2>;
382
383         cpu@0 {
384             device_type = "cpu";
385             compatible = "arm,cortex-a57";
386             reg = <0x0 0x0>;
387             enable-method = "psci";
388             cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
389                     <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
390         };
391
392         cpu@1 {
393             device_type = "cpu";
394             compatible = "arm,cortex-a57";
395             reg = <0x0 0x1>;
396             enable-method = "psci";
397             cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
398                     <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
399         };
400
401         cpu@100 {
402             device_type = "cpu";
403             compatible = "arm,cortex-a57";
404             reg = <0x0 0x100>;
405             enable-method = "psci";
406             cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
407                     <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
408         };
409
410         cpu@101 {
411             device_type = "cpu";
412             compatible = "arm,cortex-a57";
413             reg = <0x0 0x101>;
414             enable-method = "psci";
415             cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
416                     <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
417         };
418
419         cpu@10000 {
420             device_type = "cpu";
421             compatible = "arm,cortex-a57";
422             reg = <0x0 0x10000>;
423             enable-method = "psci";
424             cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
425                     <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
426         };
427
428         cpu@10001 {
429             device_type = "cpu";
430             compatible = "arm,cortex-a57";
431             reg = <0x0 0x10001>;
432             enable-method = "psci";
433             cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
434                     <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
435         };
436
437         cpu@10100 {
438             device_type = "cpu";
439             compatible = "arm,cortex-a57";
440             reg = <0x0 0x10100>;
441             enable-method = "psci";
442             cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
443                     <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
444         };
445
446         cpu@10101 {
447             device_type = "cpu";
448             compatible = "arm,cortex-a57";
449             reg = <0x0 0x10101>;
450             enable-method = "psci";
451             cpu-idle-states = <&CPU_RETENTION_0_0>, <&CPU_SLEEP_0_0>,
452                     <&CLUSTER_RETENTION_0>, <&CLUSTER_SLEEP_0>;
453         };
454
455         cpu@100000000 {
456             device_type = "cpu";
457             compatible = "arm,cortex-a53";
458             reg = <0x1 0x0>;
459             enable-method = "psci";
460             cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
461                     <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
462         };
463
464         cpu@100000001 {
465             device_type = "cpu";
466             compatible = "arm,cortex-a53";
467             reg = <0x1 0x1>;
468             enable-method = "psci";
469             cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
470                     <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
471         };
472
473         cpu@100000100 {
474             device_type = "cpu";
475             compatible = "arm,cortex-a53";
476             reg = <0x1 0x100>;
477             enable-method = "psci";
478             cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
479                     <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
480         };
481
482         cpu@100000101 {
483             device_type = "cpu";
484             compatible = "arm,cortex-a53";
485             reg = <0x1 0x101>;
486             enable-method = "psci";
487             cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
488                     <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
489         };
490
491         cpu@100010000 {
492             device_type = "cpu";
493             compatible = "arm,cortex-a53";
494             reg = <0x1 0x10000>;
495             enable-method = "psci";
496             cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
497                     <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
498         };
499
500         cpu@100010001 {
501             device_type = "cpu";
502             compatible = "arm,cortex-a53";
503             reg = <0x1 0x10001>;
504             enable-method = "psci";
505             cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
506                     <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
507         };
508
509         cpu@100010100 {
510             device_type = "cpu";
511             compatible = "arm,cortex-a53";
512             reg = <0x1 0x10100>;
513             enable-method = "psci";
514             cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
515                     <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
516         };
517
518         cpu@100010101 {
519             device_type = "cpu";
520             compatible = "arm,cortex-a53";
521             reg = <0x1 0x10101>;
522             enable-method = "psci";
523             cpu-idle-states = <&CPU_RETENTION_1_0>, <&CPU_SLEEP_1_0>,
524                     <&CLUSTER_RETENTION_1>, <&CLUSTER_SLEEP_1>;
525         };
526
527         idle-states {
528             entry-method = "psci";
529
530             CPU_RETENTION_0_0: cpu-retention-0-0 {
531                 compatible = "arm,idle-state";
532                 arm,psci-suspend-param = <0x0010000>;
533                 entry-latency-us = <20>;
534                 exit-latency-us = <40>;
535                 min-residency-us = <80>;
536             };
537
538             CLUSTER_RETENTION_0: cluster-retention-0 {
539                 compatible = "arm,idle-state";
540                 local-timer-stop;
541                 arm,psci-suspend-param = <0x1010000>;
542                 entry-latency-us = <50>;
543                 exit-latency-us = <100>;
544                 min-residency-us = <250>;
545                 wakeup-latency-us = <130>;
546             };
547
548             CPU_SLEEP_0_0: cpu-sleep-0-0 {
549                 compatible = "arm,idle-state";
550                 local-timer-stop;
551                 arm,psci-suspend-param = <0x0010000>;
552                 entry-latency-us = <250>;
553                 exit-latency-us = <500>;
554                 min-residency-us = <950>;
555             };
556
557             CLUSTER_SLEEP_0: cluster-sleep-0 {
558                 compatible = "arm,idle-state";
559                 local-timer-stop;
560                 arm,psci-suspend-param = <0x1010000>;
561                 entry-latency-us = <600>;
562                 exit-latency-us = <1100>;
563                 min-residency-us = <2700>;
564                 wakeup-latency-us = <1500>;
565             };
566
567             CPU_RETENTION_1_0: cpu-retention-1-0 {
568                 compatible = "arm,idle-state";
569                 arm,psci-suspend-param = <0x0010000>;
570                 entry-latency-us = <20>;
571                 exit-latency-us = <40>;
572                 min-residency-us = <90>;
573             };
574
575             CLUSTER_RETENTION_1: cluster-retention-1 {
576                 compatible = "arm,idle-state";
577                 local-timer-stop;
578                 arm,psci-suspend-param = <0x1010000>;
579                 entry-latency-us = <50>;
580                 exit-latency-us = <100>;
581                 min-residency-us = <270>;
582                 wakeup-latency-us = <100>;
583             };
584
585             CPU_SLEEP_1_0: cpu-sleep-1-0 {
586                 compatible = "arm,idle-state";
587                 local-timer-stop;
588                 arm,psci-suspend-param = <0x0010000>;
589                 entry-latency-us = <70>;
590                 exit-latency-us = <100>;
591                 min-residency-us = <300>;
592                 wakeup-latency-us = <150>;
593             };
594
595             CLUSTER_SLEEP_1: cluster-sleep-1 {
596                 compatible = "arm,idle-state";
597                 local-timer-stop;
598                 arm,psci-suspend-param = <0x1010000>;
599                 entry-latency-us = <500>;
600                 exit-latency-us = <1200>;
601                 min-residency-us = <3500>;
602                 wakeup-latency-us = <1300>;
603             };
604         };
605     };
606
607   - |
608     // Example 2 (ARM 32-bit, 8-cpu system, two clusters):
609
610     cpus {
611         #size-cells = <0>;
612         #address-cells = <1>;
613
614         cpu@0 {
615             device_type = "cpu";
616             compatible = "arm,cortex-a15";
617             reg = <0x0>;
618             cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>;
619         };
620
621         cpu@1 {
622             device_type = "cpu";
623             compatible = "arm,cortex-a15";
624             reg = <0x1>;
625             cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>;
626         };
627
628         cpu@2 {
629             device_type = "cpu";
630             compatible = "arm,cortex-a15";
631             reg = <0x2>;
632             cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>;
633         };
634
635         cpu@3 {
636             device_type = "cpu";
637             compatible = "arm,cortex-a15";
638             reg = <0x3>;
639             cpu-idle-states = <&cpu_sleep_0_0>, <&cluster_sleep_0>;
640         };
641
642         cpu@100 {
643             device_type = "cpu";
644             compatible = "arm,cortex-a7";
645             reg = <0x100>;
646             cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>;
647         };
648
649         cpu@101 {
650             device_type = "cpu";
651             compatible = "arm,cortex-a7";
652             reg = <0x101>;
653             cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>;
654         };
655
656         cpu@102 {
657             device_type = "cpu";
658             compatible = "arm,cortex-a7";
659             reg = <0x102>;
660             cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>;
661         };
662
663         cpu@103 {
664             device_type = "cpu";
665             compatible = "arm,cortex-a7";
666             reg = <0x103>;
667             cpu-idle-states = <&cpu_sleep_1_0>, <&cluster_sleep_1>;
668         };
669
670         idle-states {
671             cpu_sleep_0_0: cpu-sleep-0-0 {
672                 compatible = "arm,idle-state";
673                 local-timer-stop;
674                 entry-latency-us = <200>;
675                 exit-latency-us = <100>;
676                 min-residency-us = <400>;
677                 wakeup-latency-us = <250>;
678             };
679
680             cluster_sleep_0: cluster-sleep-0 {
681                 compatible = "arm,idle-state";
682                 local-timer-stop;
683                 entry-latency-us = <500>;
684                 exit-latency-us = <1500>;
685                 min-residency-us = <2500>;
686                 wakeup-latency-us = <1700>;
687             };
688
689             cpu_sleep_1_0: cpu-sleep-1-0 {
690                 compatible = "arm,idle-state";
691                 local-timer-stop;
692                 entry-latency-us = <300>;
693                 exit-latency-us = <500>;
694                 min-residency-us = <900>;
695                 wakeup-latency-us = <600>;
696             };
697
698             cluster_sleep_1: cluster-sleep-1 {
699                 compatible = "arm,idle-state";
700                 local-timer-stop;
701                 entry-latency-us = <800>;
702                 exit-latency-us = <2000>;
703                 min-residency-us = <6500>;
704                 wakeup-latency-us = <2300>;
705             };
706         };
707     };
708
709   - |
710     // Example 3 (RISC-V 64-bit, 4-cpu systems, two clusters):
711
712     cpus {
713         #size-cells = <0>;
714         #address-cells = <1>;
715
716         cpu@0 {
717             device_type = "cpu";
718             compatible = "riscv";
719             reg = <0x0>;
720             riscv,isa = "rv64imafdc";
721             mmu-type = "riscv,sv48";
722             cpu-idle-states = <&CPU_RET_0_0>, <&CPU_NONRET_0_0>,
723                             <&CLUSTER_RET_0>, <&CLUSTER_NONRET_0>;
724
725             cpu_intc0: interrupt-controller {
726                 #interrupt-cells = <1>;
727                 compatible = "riscv,cpu-intc";
728                 interrupt-controller;
729             };
730         };
731
732         cpu@1 {
733             device_type = "cpu";
734             compatible = "riscv";
735             reg = <0x1>;
736             riscv,isa = "rv64imafdc";
737             mmu-type = "riscv,sv48";
738             cpu-idle-states = <&CPU_RET_0_0>, <&CPU_NONRET_0_0>,
739                             <&CLUSTER_RET_0>, <&CLUSTER_NONRET_0>;
740
741             cpu_intc1: interrupt-controller {
742                 #interrupt-cells = <1>;
743                 compatible = "riscv,cpu-intc";
744                 interrupt-controller;
745             };
746         };
747
748         cpu@10 {
749             device_type = "cpu";
750             compatible = "riscv";
751             reg = <0x10>;
752             riscv,isa = "rv64imafdc";
753             mmu-type = "riscv,sv48";
754             cpu-idle-states = <&CPU_RET_1_0>, <&CPU_NONRET_1_0>,
755                             <&CLUSTER_RET_1>, <&CLUSTER_NONRET_1>;
756
757             cpu_intc10: interrupt-controller {
758                 #interrupt-cells = <1>;
759                 compatible = "riscv,cpu-intc";
760                 interrupt-controller;
761             };
762         };
763
764         cpu@11 {
765             device_type = "cpu";
766             compatible = "riscv";
767             reg = <0x11>;
768             riscv,isa = "rv64imafdc";
769             mmu-type = "riscv,sv48";
770             cpu-idle-states = <&CPU_RET_1_0>, <&CPU_NONRET_1_0>,
771                             <&CLUSTER_RET_1>, <&CLUSTER_NONRET_1>;
772
773             cpu_intc11: interrupt-controller {
774                 #interrupt-cells = <1>;
775                 compatible = "riscv,cpu-intc";
776                 interrupt-controller;
777             };
778         };
779
780         idle-states {
781             CPU_RET_0_0: cpu-retentive-0-0 {
782                 compatible = "riscv,idle-state";
783                 riscv,sbi-suspend-param = <0x10000000>;
784                 entry-latency-us = <20>;
785                 exit-latency-us = <40>;
786                 min-residency-us = <80>;
787             };
788
789             CPU_NONRET_0_0: cpu-nonretentive-0-0 {
790                 compatible = "riscv,idle-state";
791                 riscv,sbi-suspend-param = <0x90000000>;
792                 entry-latency-us = <250>;
793                 exit-latency-us = <500>;
794                 min-residency-us = <950>;
795             };
796
797             CLUSTER_RET_0: cluster-retentive-0 {
798                 compatible = "riscv,idle-state";
799                 riscv,sbi-suspend-param = <0x11000000>;
800                 local-timer-stop;
801                 entry-latency-us = <50>;
802                 exit-latency-us = <100>;
803                 min-residency-us = <250>;
804                 wakeup-latency-us = <130>;
805             };
806
807             CLUSTER_NONRET_0: cluster-nonretentive-0 {
808                 compatible = "riscv,idle-state";
809                 riscv,sbi-suspend-param = <0x91000000>;
810                 local-timer-stop;
811                 entry-latency-us = <600>;
812                 exit-latency-us = <1100>;
813                 min-residency-us = <2700>;
814                 wakeup-latency-us = <1500>;
815             };
816
817             CPU_RET_1_0: cpu-retentive-1-0 {
818                 compatible = "riscv,idle-state";
819                 riscv,sbi-suspend-param = <0x10000010>;
820                 entry-latency-us = <20>;
821                 exit-latency-us = <40>;
822                 min-residency-us = <80>;
823             };
824
825             CPU_NONRET_1_0: cpu-nonretentive-1-0 {
826                 compatible = "riscv,idle-state";
827                 riscv,sbi-suspend-param = <0x90000010>;
828                 entry-latency-us = <250>;
829                 exit-latency-us = <500>;
830                 min-residency-us = <950>;
831             };
832
833             CLUSTER_RET_1: cluster-retentive-1 {
834                 compatible = "riscv,idle-state";
835                 riscv,sbi-suspend-param = <0x11000010>;
836                 local-timer-stop;
837                 entry-latency-us = <50>;
838                 exit-latency-us = <100>;
839                 min-residency-us = <250>;
840                 wakeup-latency-us = <130>;
841             };
842
843             CLUSTER_NONRET_1: cluster-nonretentive-1 {
844                 compatible = "riscv,idle-state";
845                 riscv,sbi-suspend-param = <0x91000010>;
846                 local-timer-stop;
847                 entry-latency-us = <600>;
848                 exit-latency-us = <1100>;
849                 min-residency-us = <2700>;
850                 wakeup-latency-us = <1500>;
851             };
852         };
853     };
854
855 ...