Merge tag 's390-6.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-microblaze.git] / Documentation / core-api / workqueue.rst
1 =========
2 Workqueue
3 =========
4
5 :Date: September, 2010
6 :Author: Tejun Heo <tj@kernel.org>
7 :Author: Florian Mickler <florian@mickler.org>
8
9
10 Introduction
11 ============
12
13 There are many cases where an asynchronous process execution context
14 is needed and the workqueue (wq) API is the most commonly used
15 mechanism for such cases.
16
17 When such an asynchronous execution context is needed, a work item
18 describing which function to execute is put on a queue.  An
19 independent thread serves as the asynchronous execution context.  The
20 queue is called workqueue and the thread is called worker.
21
22 While there are work items on the workqueue the worker executes the
23 functions associated with the work items one after the other.  When
24 there is no work item left on the workqueue the worker becomes idle.
25 When a new work item gets queued, the worker begins executing again.
26
27
28 Why Concurrency Managed Workqueue?
29 ==================================
30
31 In the original wq implementation, a multi threaded (MT) wq had one
32 worker thread per CPU and a single threaded (ST) wq had one worker
33 thread system-wide.  A single MT wq needed to keep around the same
34 number of workers as the number of CPUs.  The kernel grew a lot of MT
35 wq users over the years and with the number of CPU cores continuously
36 rising, some systems saturated the default 32k PID space just booting
37 up.
38
39 Although MT wq wasted a lot of resource, the level of concurrency
40 provided was unsatisfactory.  The limitation was common to both ST and
41 MT wq albeit less severe on MT.  Each wq maintained its own separate
42 worker pool.  An MT wq could provide only one execution context per CPU
43 while an ST wq one for the whole system.  Work items had to compete for
44 those very limited execution contexts leading to various problems
45 including proneness to deadlocks around the single execution context.
46
47 The tension between the provided level of concurrency and resource
48 usage also forced its users to make unnecessary tradeoffs like libata
49 choosing to use ST wq for polling PIOs and accepting an unnecessary
50 limitation that no two polling PIOs can progress at the same time.  As
51 MT wq don't provide much better concurrency, users which require
52 higher level of concurrency, like async or fscache, had to implement
53 their own thread pool.
54
55 Concurrency Managed Workqueue (cmwq) is a reimplementation of wq with
56 focus on the following goals.
57
58 * Maintain compatibility with the original workqueue API.
59
60 * Use per-CPU unified worker pools shared by all wq to provide
61   flexible level of concurrency on demand without wasting a lot of
62   resource.
63
64 * Automatically regulate worker pool and level of concurrency so that
65   the API users don't need to worry about such details.
66
67
68 The Design
69 ==========
70
71 In order to ease the asynchronous execution of functions a new
72 abstraction, the work item, is introduced.
73
74 A work item is a simple struct that holds a pointer to the function
75 that is to be executed asynchronously.  Whenever a driver or subsystem
76 wants a function to be executed asynchronously it has to set up a work
77 item pointing to that function and queue that work item on a
78 workqueue.
79
80 A work item can be executed in either a thread or the BH (softirq) context.
81
82 For threaded workqueues, special purpose threads, called [k]workers, execute
83 the functions off of the queue, one after the other. If no work is queued,
84 the worker threads become idle. These worker threads are managed in
85 worker-pools.
86
87 The cmwq design differentiates between the user-facing workqueues that
88 subsystems and drivers queue work items on and the backend mechanism
89 which manages worker-pools and processes the queued work items.
90
91 There are two worker-pools, one for normal work items and the other
92 for high priority ones, for each possible CPU and some extra
93 worker-pools to serve work items queued on unbound workqueues - the
94 number of these backing pools is dynamic.
95
96 BH workqueues use the same framework. However, as there can only be one
97 concurrent execution context, there's no need to worry about concurrency.
98 Each per-CPU BH worker pool contains only one pseudo worker which represents
99 the BH execution context. A BH workqueue can be considered a convenience
100 interface to softirq.
101
102 Subsystems and drivers can create and queue work items through special
103 workqueue API functions as they see fit. They can influence some
104 aspects of the way the work items are executed by setting flags on the
105 workqueue they are putting the work item on. These flags include
106 things like CPU locality, concurrency limits, priority and more.  To
107 get a detailed overview refer to the API description of
108 ``alloc_workqueue()`` below.
109
110 When a work item is queued to a workqueue, the target worker-pool is
111 determined according to the queue parameters and workqueue attributes
112 and appended on the shared worklist of the worker-pool.  For example,
113 unless specifically overridden, a work item of a bound workqueue will
114 be queued on the worklist of either normal or highpri worker-pool that
115 is associated to the CPU the issuer is running on.
116
117 For any thread pool implementation, managing the concurrency level
118 (how many execution contexts are active) is an important issue.  cmwq
119 tries to keep the concurrency at a minimal but sufficient level.
120 Minimal to save resources and sufficient in that the system is used at
121 its full capacity.
122
123 Each worker-pool bound to an actual CPU implements concurrency
124 management by hooking into the scheduler.  The worker-pool is notified
125 whenever an active worker wakes up or sleeps and keeps track of the
126 number of the currently runnable workers.  Generally, work items are
127 not expected to hog a CPU and consume many cycles.  That means
128 maintaining just enough concurrency to prevent work processing from
129 stalling should be optimal.  As long as there are one or more runnable
130 workers on the CPU, the worker-pool doesn't start execution of a new
131 work, but, when the last running worker goes to sleep, it immediately
132 schedules a new worker so that the CPU doesn't sit idle while there
133 are pending work items.  This allows using a minimal number of workers
134 without losing execution bandwidth.
135
136 Keeping idle workers around doesn't cost other than the memory space
137 for kthreads, so cmwq holds onto idle ones for a while before killing
138 them.
139
140 For unbound workqueues, the number of backing pools is dynamic.
141 Unbound workqueue can be assigned custom attributes using
142 ``apply_workqueue_attrs()`` and workqueue will automatically create
143 backing worker pools matching the attributes.  The responsibility of
144 regulating concurrency level is on the users.  There is also a flag to
145 mark a bound wq to ignore the concurrency management.  Please refer to
146 the API section for details.
147
148 Forward progress guarantee relies on that workers can be created when
149 more execution contexts are necessary, which in turn is guaranteed
150 through the use of rescue workers.  All work items which might be used
151 on code paths that handle memory reclaim are required to be queued on
152 wq's that have a rescue-worker reserved for execution under memory
153 pressure.  Else it is possible that the worker-pool deadlocks waiting
154 for execution contexts to free up.
155
156
157 Application Programming Interface (API)
158 =======================================
159
160 ``alloc_workqueue()`` allocates a wq.  The original
161 ``create_*workqueue()`` functions are deprecated and scheduled for
162 removal.  ``alloc_workqueue()`` takes three arguments - ``@name``,
163 ``@flags`` and ``@max_active``.  ``@name`` is the name of the wq and
164 also used as the name of the rescuer thread if there is one.
165
166 A wq no longer manages execution resources but serves as a domain for
167 forward progress guarantee, flush and work item attributes. ``@flags``
168 and ``@max_active`` control how work items are assigned execution
169 resources, scheduled and executed.
170
171
172 ``flags``
173 ---------
174
175 ``WQ_BH``
176   BH workqueues can be considered a convenience interface to softirq. BH
177   workqueues are always per-CPU and all BH work items are executed in the
178   queueing CPU's softirq context in the queueing order.
179
180   All BH workqueues must have 0 ``max_active`` and ``WQ_HIGHPRI`` is the
181   only allowed additional flag.
182
183   BH work items cannot sleep. All other features such as delayed queueing,
184   flushing and canceling are supported.
185
186 ``WQ_UNBOUND``
187   Work items queued to an unbound wq are served by the special
188   worker-pools which host workers which are not bound to any
189   specific CPU.  This makes the wq behave as a simple execution
190   context provider without concurrency management.  The unbound
191   worker-pools try to start execution of work items as soon as
192   possible.  Unbound wq sacrifices locality but is useful for
193   the following cases.
194
195   * Wide fluctuation in the concurrency level requirement is
196     expected and using bound wq may end up creating large number
197     of mostly unused workers across different CPUs as the issuer
198     hops through different CPUs.
199
200   * Long running CPU intensive workloads which can be better
201     managed by the system scheduler.
202
203 ``WQ_FREEZABLE``
204   A freezable wq participates in the freeze phase of the system
205   suspend operations.  Work items on the wq are drained and no
206   new work item starts execution until thawed.
207
208 ``WQ_MEM_RECLAIM``
209   All wq which might be used in the memory reclaim paths **MUST**
210   have this flag set.  The wq is guaranteed to have at least one
211   execution context regardless of memory pressure.
212
213 ``WQ_HIGHPRI``
214   Work items of a highpri wq are queued to the highpri
215   worker-pool of the target cpu.  Highpri worker-pools are
216   served by worker threads with elevated nice level.
217
218   Note that normal and highpri worker-pools don't interact with
219   each other.  Each maintains its separate pool of workers and
220   implements concurrency management among its workers.
221
222 ``WQ_CPU_INTENSIVE``
223   Work items of a CPU intensive wq do not contribute to the
224   concurrency level.  In other words, runnable CPU intensive
225   work items will not prevent other work items in the same
226   worker-pool from starting execution.  This is useful for bound
227   work items which are expected to hog CPU cycles so that their
228   execution is regulated by the system scheduler.
229
230   Although CPU intensive work items don't contribute to the
231   concurrency level, start of their executions is still
232   regulated by the concurrency management and runnable
233   non-CPU-intensive work items can delay execution of CPU
234   intensive work items.
235
236   This flag is meaningless for unbound wq.
237
238
239 ``max_active``
240 --------------
241
242 ``@max_active`` determines the maximum number of execution contexts per
243 CPU which can be assigned to the work items of a wq. For example, with
244 ``@max_active`` of 16, at most 16 work items of the wq can be executing
245 at the same time per CPU. This is always a per-CPU attribute, even for
246 unbound workqueues.
247
248 The maximum limit for ``@max_active`` is 512 and the default value used
249 when 0 is specified is 256. These values are chosen sufficiently high
250 such that they are not the limiting factor while providing protection in
251 runaway cases.
252
253 The number of active work items of a wq is usually regulated by the
254 users of the wq, more specifically, by how many work items the users
255 may queue at the same time.  Unless there is a specific need for
256 throttling the number of active work items, specifying '0' is
257 recommended.
258
259 Some users depend on strict execution ordering where only one work item
260 is in flight at any given time and the work items are processed in
261 queueing order. While the combination of ``@max_active`` of 1 and
262 ``WQ_UNBOUND`` used to achieve this behavior, this is no longer the
263 case. Use ``alloc_ordered_queue()`` instead.
264
265
266 Example Execution Scenarios
267 ===========================
268
269 The following example execution scenarios try to illustrate how cmwq
270 behave under different configurations.
271
272  Work items w0, w1, w2 are queued to a bound wq q0 on the same CPU.
273  w0 burns CPU for 5ms then sleeps for 10ms then burns CPU for 5ms
274  again before finishing.  w1 and w2 burn CPU for 5ms then sleep for
275  10ms.
276
277 Ignoring all other tasks, works and processing overhead, and assuming
278 simple FIFO scheduling, the following is one highly simplified version
279 of possible sequences of events with the original wq. ::
280
281  TIME IN MSECS  EVENT
282  0              w0 starts and burns CPU
283  5              w0 sleeps
284  15             w0 wakes up and burns CPU
285  20             w0 finishes
286  20             w1 starts and burns CPU
287  25             w1 sleeps
288  35             w1 wakes up and finishes
289  35             w2 starts and burns CPU
290  40             w2 sleeps
291  50             w2 wakes up and finishes
292
293 And with cmwq with ``@max_active`` >= 3, ::
294
295  TIME IN MSECS  EVENT
296  0              w0 starts and burns CPU
297  5              w0 sleeps
298  5              w1 starts and burns CPU
299  10             w1 sleeps
300  10             w2 starts and burns CPU
301  15             w2 sleeps
302  15             w0 wakes up and burns CPU
303  20             w0 finishes
304  20             w1 wakes up and finishes
305  25             w2 wakes up and finishes
306
307 If ``@max_active`` == 2, ::
308
309  TIME IN MSECS  EVENT
310  0              w0 starts and burns CPU
311  5              w0 sleeps
312  5              w1 starts and burns CPU
313  10             w1 sleeps
314  15             w0 wakes up and burns CPU
315  20             w0 finishes
316  20             w1 wakes up and finishes
317  20             w2 starts and burns CPU
318  25             w2 sleeps
319  35             w2 wakes up and finishes
320
321 Now, let's assume w1 and w2 are queued to a different wq q1 which has
322 ``WQ_CPU_INTENSIVE`` set, ::
323
324  TIME IN MSECS  EVENT
325  0              w0 starts and burns CPU
326  5              w0 sleeps
327  5              w1 and w2 start and burn CPU
328  10             w1 sleeps
329  15             w2 sleeps
330  15             w0 wakes up and burns CPU
331  20             w0 finishes
332  20             w1 wakes up and finishes
333  25             w2 wakes up and finishes
334
335
336 Guidelines
337 ==========
338
339 * Do not forget to use ``WQ_MEM_RECLAIM`` if a wq may process work
340   items which are used during memory reclaim.  Each wq with
341   ``WQ_MEM_RECLAIM`` set has an execution context reserved for it.  If
342   there is dependency among multiple work items used during memory
343   reclaim, they should be queued to separate wq each with
344   ``WQ_MEM_RECLAIM``.
345
346 * Unless strict ordering is required, there is no need to use ST wq.
347
348 * Unless there is a specific need, using 0 for @max_active is
349   recommended.  In most use cases, concurrency level usually stays
350   well under the default limit.
351
352 * A wq serves as a domain for forward progress guarantee
353   (``WQ_MEM_RECLAIM``, flush and work item attributes.  Work items
354   which are not involved in memory reclaim and don't need to be
355   flushed as a part of a group of work items, and don't require any
356   special attribute, can use one of the system wq.  There is no
357   difference in execution characteristics between using a dedicated wq
358   and a system wq.
359
360 * Unless work items are expected to consume a huge amount of CPU
361   cycles, using a bound wq is usually beneficial due to the increased
362   level of locality in wq operations and work item execution.
363
364
365 Affinity Scopes
366 ===============
367
368 An unbound workqueue groups CPUs according to its affinity scope to improve
369 cache locality. For example, if a workqueue is using the default affinity
370 scope of "cache", it will group CPUs according to last level cache
371 boundaries. A work item queued on the workqueue will be assigned to a worker
372 on one of the CPUs which share the last level cache with the issuing CPU.
373 Once started, the worker may or may not be allowed to move outside the scope
374 depending on the ``affinity_strict`` setting of the scope.
375
376 Workqueue currently supports the following affinity scopes.
377
378 ``default``
379   Use the scope in module parameter ``workqueue.default_affinity_scope``
380   which is always set to one of the scopes below.
381
382 ``cpu``
383   CPUs are not grouped. A work item issued on one CPU is processed by a
384   worker on the same CPU. This makes unbound workqueues behave as per-cpu
385   workqueues without concurrency management.
386
387 ``smt``
388   CPUs are grouped according to SMT boundaries. This usually means that the
389   logical threads of each physical CPU core are grouped together.
390
391 ``cache``
392   CPUs are grouped according to cache boundaries. Which specific cache
393   boundary is used is determined by the arch code. L3 is used in a lot of
394   cases. This is the default affinity scope.
395
396 ``numa``
397   CPUs are grouped according to NUMA boundaries.
398
399 ``system``
400   All CPUs are put in the same group. Workqueue makes no effort to process a
401   work item on a CPU close to the issuing CPU.
402
403 The default affinity scope can be changed with the module parameter
404 ``workqueue.default_affinity_scope`` and a specific workqueue's affinity
405 scope can be changed using ``apply_workqueue_attrs()``.
406
407 If ``WQ_SYSFS`` is set, the workqueue will have the following affinity scope
408 related interface files under its ``/sys/devices/virtual/workqueue/WQ_NAME/``
409 directory.
410
411 ``affinity_scope``
412   Read to see the current affinity scope. Write to change.
413
414   When default is the current scope, reading this file will also show the
415   current effective scope in parentheses, for example, ``default (cache)``.
416
417 ``affinity_strict``
418   0 by default indicating that affinity scopes are not strict. When a work
419   item starts execution, workqueue makes a best-effort attempt to ensure
420   that the worker is inside its affinity scope, which is called
421   repatriation. Once started, the scheduler is free to move the worker
422   anywhere in the system as it sees fit. This enables benefiting from scope
423   locality while still being able to utilize other CPUs if necessary and
424   available.
425
426   If set to 1, all workers of the scope are guaranteed always to be in the
427   scope. This may be useful when crossing affinity scopes has other
428   implications, for example, in terms of power consumption or workload
429   isolation. Strict NUMA scope can also be used to match the workqueue
430   behavior of older kernels.
431
432
433 Affinity Scopes and Performance
434 ===============================
435
436 It'd be ideal if an unbound workqueue's behavior is optimal for vast
437 majority of use cases without further tuning. Unfortunately, in the current
438 kernel, there exists a pronounced trade-off between locality and utilization
439 necessitating explicit configurations when workqueues are heavily used.
440
441 Higher locality leads to higher efficiency where more work is performed for
442 the same number of consumed CPU cycles. However, higher locality may also
443 cause lower overall system utilization if the work items are not spread
444 enough across the affinity scopes by the issuers. The following performance
445 testing with dm-crypt clearly illustrates this trade-off.
446
447 The tests are run on a CPU with 12-cores/24-threads split across four L3
448 caches (AMD Ryzen 9 3900x). CPU clock boost is turned off for consistency.
449 ``/dev/dm-0`` is a dm-crypt device created on NVME SSD (Samsung 990 PRO) and
450 opened with ``cryptsetup`` with default settings.
451
452
453 Scenario 1: Enough issuers and work spread across the machine
454 -------------------------------------------------------------
455
456 The command used: ::
457
458   $ fio --filename=/dev/dm-0 --direct=1 --rw=randrw --bs=32k --ioengine=libaio \
459     --iodepth=64 --runtime=60 --numjobs=24 --time_based --group_reporting \
460     --name=iops-test-job --verify=sha512
461
462 There are 24 issuers, each issuing 64 IOs concurrently. ``--verify=sha512``
463 makes ``fio`` generate and read back the content each time which makes
464 execution locality matter between the issuer and ``kcryptd``. The following
465 are the read bandwidths and CPU utilizations depending on different affinity
466 scope settings on ``kcryptd`` measured over five runs. Bandwidths are in
467 MiBps, and CPU util in percents.
468
469 .. list-table::
470    :widths: 16 20 20
471    :header-rows: 1
472
473    * - Affinity
474      - Bandwidth (MiBps)
475      - CPU util (%)
476
477    * - system
478      - 1159.40 Â±1.34
479      - 99.31 Â±0.02
480
481    * - cache
482      - 1166.40 Â±0.89
483      - 99.34 Â±0.01
484
485    * - cache (strict)
486      - 1166.00 Â±0.71
487      - 99.35 Â±0.01
488
489 With enough issuers spread across the system, there is no downside to
490 "cache", strict or otherwise. All three configurations saturate the whole
491 machine but the cache-affine ones outperform by 0.6% thanks to improved
492 locality.
493
494
495 Scenario 2: Fewer issuers, enough work for saturation
496 -----------------------------------------------------
497
498 The command used: ::
499
500   $ fio --filename=/dev/dm-0 --direct=1 --rw=randrw --bs=32k \
501     --ioengine=libaio --iodepth=64 --runtime=60 --numjobs=8 \
502     --time_based --group_reporting --name=iops-test-job --verify=sha512
503
504 The only difference from the previous scenario is ``--numjobs=8``. There are
505 a third of the issuers but is still enough total work to saturate the
506 system.
507
508 .. list-table::
509    :widths: 16 20 20
510    :header-rows: 1
511
512    * - Affinity
513      - Bandwidth (MiBps)
514      - CPU util (%)
515
516    * - system
517      - 1155.40 Â±0.89
518      - 97.41 Â±0.05
519
520    * - cache
521      - 1154.40 Â±1.14
522      - 96.15 Â±0.09
523
524    * - cache (strict)
525      - 1112.00 Â±4.64
526      - 93.26 Â±0.35
527
528 This is more than enough work to saturate the system. Both "system" and
529 "cache" are nearly saturating the machine but not fully. "cache" is using
530 less CPU but the better efficiency puts it at the same bandwidth as
531 "system".
532
533 Eight issuers moving around over four L3 cache scope still allow "cache
534 (strict)" to mostly saturate the machine but the loss of work conservation
535 is now starting to hurt with 3.7% bandwidth loss.
536
537
538 Scenario 3: Even fewer issuers, not enough work to saturate
539 -----------------------------------------------------------
540
541 The command used: ::
542
543   $ fio --filename=/dev/dm-0 --direct=1 --rw=randrw --bs=32k \
544     --ioengine=libaio --iodepth=64 --runtime=60 --numjobs=4 \
545     --time_based --group_reporting --name=iops-test-job --verify=sha512
546
547 Again, the only difference is ``--numjobs=4``. With the number of issuers
548 reduced to four, there now isn't enough work to saturate the whole system
549 and the bandwidth becomes dependent on completion latencies.
550
551 .. list-table::
552    :widths: 16 20 20
553    :header-rows: 1
554
555    * - Affinity
556      - Bandwidth (MiBps)
557      - CPU util (%)
558
559    * - system
560      - 993.60 Â±1.82
561      - 75.49 Â±0.06
562
563    * - cache
564      - 973.40 Â±1.52
565      - 74.90 Â±0.07
566
567    * - cache (strict)
568      - 828.20 Â±4.49
569      - 66.84 Â±0.29
570
571 Now, the tradeoff between locality and utilization is clearer. "cache" shows
572 2% bandwidth loss compared to "system" and "cache (struct)" whopping 20%.
573
574
575 Conclusion and Recommendations
576 ------------------------------
577
578 In the above experiments, the efficiency advantage of the "cache" affinity
579 scope over "system" is, while consistent and noticeable, small. However, the
580 impact is dependent on the distances between the scopes and may be more
581 pronounced in processors with more complex topologies.
582
583 While the loss of work-conservation in certain scenarios hurts, it is a lot
584 better than "cache (strict)" and maximizing workqueue utilization is
585 unlikely to be the common case anyway. As such, "cache" is the default
586 affinity scope for unbound pools.
587
588 * As there is no one option which is great for most cases, workqueue usages
589   that may consume a significant amount of CPU are recommended to configure
590   the workqueues using ``apply_workqueue_attrs()`` and/or enable
591   ``WQ_SYSFS``.
592
593 * An unbound workqueue with strict "cpu" affinity scope behaves the same as
594   ``WQ_CPU_INTENSIVE`` per-cpu workqueue. There is no real advanage to the
595   latter and an unbound workqueue provides a lot more flexibility.
596
597 * Affinity scopes are introduced in Linux v6.5. To emulate the previous
598   behavior, use strict "numa" affinity scope.
599
600 * The loss of work-conservation in non-strict affinity scopes is likely
601   originating from the scheduler. There is no theoretical reason why the
602   kernel wouldn't be able to do the right thing and maintain
603   work-conservation in most cases. As such, it is possible that future
604   scheduler improvements may make most of these tunables unnecessary.
605
606
607 Examining Configuration
608 =======================
609
610 Use tools/workqueue/wq_dump.py to examine unbound CPU affinity
611 configuration, worker pools and how workqueues map to the pools: ::
612
613   $ tools/workqueue/wq_dump.py
614   Affinity Scopes
615   ===============
616   wq_unbound_cpumask=0000000f
617
618   CPU
619     nr_pods  4
620     pod_cpus [0]=00000001 [1]=00000002 [2]=00000004 [3]=00000008
621     pod_node [0]=0 [1]=0 [2]=1 [3]=1
622     cpu_pod  [0]=0 [1]=1 [2]=2 [3]=3
623
624   SMT
625     nr_pods  4
626     pod_cpus [0]=00000001 [1]=00000002 [2]=00000004 [3]=00000008
627     pod_node [0]=0 [1]=0 [2]=1 [3]=1
628     cpu_pod  [0]=0 [1]=1 [2]=2 [3]=3
629
630   CACHE (default)
631     nr_pods  2
632     pod_cpus [0]=00000003 [1]=0000000c
633     pod_node [0]=0 [1]=1
634     cpu_pod  [0]=0 [1]=0 [2]=1 [3]=1
635
636   NUMA
637     nr_pods  2
638     pod_cpus [0]=00000003 [1]=0000000c
639     pod_node [0]=0 [1]=1
640     cpu_pod  [0]=0 [1]=0 [2]=1 [3]=1
641
642   SYSTEM
643     nr_pods  1
644     pod_cpus [0]=0000000f
645     pod_node [0]=-1
646     cpu_pod  [0]=0 [1]=0 [2]=0 [3]=0
647
648   Worker Pools
649   ============
650   pool[00] ref= 1 nice=  0 idle/workers=  4/  4 cpu=  0
651   pool[01] ref= 1 nice=-20 idle/workers=  2/  2 cpu=  0
652   pool[02] ref= 1 nice=  0 idle/workers=  4/  4 cpu=  1
653   pool[03] ref= 1 nice=-20 idle/workers=  2/  2 cpu=  1
654   pool[04] ref= 1 nice=  0 idle/workers=  4/  4 cpu=  2
655   pool[05] ref= 1 nice=-20 idle/workers=  2/  2 cpu=  2
656   pool[06] ref= 1 nice=  0 idle/workers=  3/  3 cpu=  3
657   pool[07] ref= 1 nice=-20 idle/workers=  2/  2 cpu=  3
658   pool[08] ref=42 nice=  0 idle/workers=  6/  6 cpus=0000000f
659   pool[09] ref=28 nice=  0 idle/workers=  3/  3 cpus=00000003
660   pool[10] ref=28 nice=  0 idle/workers= 17/ 17 cpus=0000000c
661   pool[11] ref= 1 nice=-20 idle/workers=  1/  1 cpus=0000000f
662   pool[12] ref= 2 nice=-20 idle/workers=  1/  1 cpus=00000003
663   pool[13] ref= 2 nice=-20 idle/workers=  1/  1 cpus=0000000c
664
665   Workqueue CPU -> pool
666   =====================
667   [    workqueue \ CPU              0  1  2  3 dfl]
668   events                   percpu   0  2  4  6
669   events_highpri           percpu   1  3  5  7
670   events_long              percpu   0  2  4  6
671   events_unbound           unbound  9  9 10 10  8
672   events_freezable         percpu   0  2  4  6
673   events_power_efficient   percpu   0  2  4  6
674   events_freezable_power_  percpu   0  2  4  6
675   rcu_gp                   percpu   0  2  4  6
676   rcu_par_gp               percpu   0  2  4  6
677   slub_flushwq             percpu   0  2  4  6
678   netns                    ordered  8  8  8  8  8
679   ...
680
681 See the command's help message for more info.
682
683
684 Monitoring
685 ==========
686
687 Use tools/workqueue/wq_monitor.py to monitor workqueue operations: ::
688
689   $ tools/workqueue/wq_monitor.py events
690                               total  infl  CPUtime  CPUhog CMW/RPR  mayday rescued
691   events                      18545     0      6.1       0       5       -       -
692   events_highpri                  8     0      0.0       0       0       -       -
693   events_long                     3     0      0.0       0       0       -       -
694   events_unbound              38306     0      0.1       -       7       -       -
695   events_freezable                0     0      0.0       0       0       -       -
696   events_power_efficient      29598     0      0.2       0       0       -       -
697   events_freezable_power_        10     0      0.0       0       0       -       -
698   sock_diag_events                0     0      0.0       0       0       -       -
699
700                               total  infl  CPUtime  CPUhog CMW/RPR  mayday rescued
701   events                      18548     0      6.1       0       5       -       -
702   events_highpri                  8     0      0.0       0       0       -       -
703   events_long                     3     0      0.0       0       0       -       -
704   events_unbound              38322     0      0.1       -       7       -       -
705   events_freezable                0     0      0.0       0       0       -       -
706   events_power_efficient      29603     0      0.2       0       0       -       -
707   events_freezable_power_        10     0      0.0       0       0       -       -
708   sock_diag_events                0     0      0.0       0       0       -       -
709
710   ...
711
712 See the command's help message for more info.
713
714
715 Debugging
716 =========
717
718 Because the work functions are executed by generic worker threads
719 there are a few tricks needed to shed some light on misbehaving
720 workqueue users.
721
722 Worker threads show up in the process list as: ::
723
724   root      5671  0.0  0.0      0     0 ?        S    12:07   0:00 [kworker/0:1]
725   root      5672  0.0  0.0      0     0 ?        S    12:07   0:00 [kworker/1:2]
726   root      5673  0.0  0.0      0     0 ?        S    12:12   0:00 [kworker/0:0]
727   root      5674  0.0  0.0      0     0 ?        S    12:13   0:00 [kworker/1:0]
728
729 If kworkers are going crazy (using too much cpu), there are two types
730 of possible problems:
731
732         1. Something being scheduled in rapid succession
733         2. A single work item that consumes lots of cpu cycles
734
735 The first one can be tracked using tracing: ::
736
737         $ echo workqueue:workqueue_queue_work > /sys/kernel/tracing/set_event
738         $ cat /sys/kernel/tracing/trace_pipe > out.txt
739         (wait a few secs)
740         ^C
741
742 If something is busy looping on work queueing, it would be dominating
743 the output and the offender can be determined with the work item
744 function.
745
746 For the second type of problems it should be possible to just check
747 the stack trace of the offending worker thread. ::
748
749         $ cat /proc/THE_OFFENDING_KWORKER/stack
750
751 The work item's function should be trivially visible in the stack
752 trace.
753
754
755 Non-reentrance Conditions
756 =========================
757
758 Workqueue guarantees that a work item cannot be re-entrant if the following
759 conditions hold after a work item gets queued:
760
761         1. The work function hasn't been changed.
762         2. No one queues the work item to another workqueue.
763         3. The work item hasn't been reinitiated.
764
765 In other words, if the above conditions hold, the work item is guaranteed to be
766 executed by at most one worker system-wide at any given time.
767
768 Note that requeuing the work item (to the same queue) in the self function
769 doesn't break these conditions, so it's safe to do. Otherwise, caution is
770 required when breaking the conditions inside a work function.
771
772
773 Kernel Inline Documentations Reference
774 ======================================
775
776 .. kernel-doc:: include/linux/workqueue.h
777
778 .. kernel-doc:: kernel/workqueue.c