drm/amdgpu: enable ras suspend/resume
[linux-2.6-microblaze.git] / Documentation / cdrom / cdrom-standard.tex
1 \documentclass{article}
2 \def\version{$Id: cdrom-standard.tex,v 1.9 1997/12/28 15:42:49 david Exp $}
3 \newcommand{\newsection}[1]{\newpage\section{#1}}
4
5 \evensidemargin=0pt
6 \oddsidemargin=0pt
7 \topmargin=-\headheight \advance\topmargin by -\headsep
8 \textwidth=15.99cm \textheight=24.62cm % normal A4, 1'' margin
9
10 \def\linux{{\sc Linux}}
11 \def\cdrom{{\sc cd-rom}}
12 \def\UCD{{\sc Uniform cd-rom Driver}}
13 \def\cdromc{{\tt {cdrom.c}}}
14 \def\cdromh{{\tt {cdrom.h}}}
15 \def\fo{\sl}                    % foreign words
16 \def\ie{{\fo i.e.}}
17 \def\eg{{\fo e.g.}}
18
19 \everymath{\it} \everydisplay{\it}
20 \catcode `\_=\active \def_{\_\penalty100 }
21 \catcode`\<=\active \def<#1>{{\langle\hbox{\rm#1}\rangle}}
22
23 \begin{document}
24 \title{A \linux\ \cdrom\ standard}
25 \author{David van Leeuwen\\{\normalsize\tt david@ElseWare.cistron.nl}
26 \\{\footnotesize updated by Erik Andersen {\tt(andersee@debian.org)}}
27 \\{\footnotesize updated by Jens Axboe {\tt(axboe@image.dk)}}}
28 \date{12 March 1999}
29
30 \maketitle
31
32 \newsection{Introduction}
33
34 \linux\ is probably the Unix-like operating system that supports
35 the widest variety of hardware devices. The reasons for this are
36 presumably 
37 \begin{itemize} 
38 \item 
39   The large list of hardware devices available for the many platforms
40   that \linux\ now supports (\ie, i386-PCs, Sparc Suns, etc.)
41 \item 
42   The open design of the operating system, such that anybody can write a
43   driver for \linux.
44 \item 
45   There is plenty of source code around as examples of how to write a driver.
46 \end{itemize}
47 The openness of \linux, and the many different types of available
48 hardware has allowed \linux\ to support many different hardware devices.
49 Unfortunately, the very openness that has allowed \linux\ to support
50 all these different devices has also allowed the behavior of each
51 device driver to differ significantly from one device to another.
52 This divergence of behavior has been very significant for \cdrom\
53 devices; the way a particular drive reacts to a `standard' $ioctl()$
54 call varies greatly from one device driver to another. To avoid making
55 their drivers totally inconsistent, the writers of \linux\ \cdrom\
56 drivers generally created new device drivers by understanding, copying,
57 and then changing an existing one. Unfortunately, this practice did not
58 maintain uniform behavior across all the \linux\ \cdrom\ drivers. 
59
60 This document describes an effort to establish Uniform behavior across
61 all the different \cdrom\ device drivers for \linux. This document also
62 defines the various $ioctl$s, and how the low-level \cdrom\ device
63 drivers should implement them. Currently (as of the \linux\ 2.1.$x$
64 development kernels) several low-level \cdrom\ device drivers, including
65 both IDE/ATAPI and SCSI, now use this Uniform interface.
66
67 When the \cdrom\ was developed, the interface between the \cdrom\ drive
68 and the computer was not specified in the standards. As a result, many
69 different \cdrom\ interfaces were developed. Some of them had their
70 own proprietary design (Sony, Mitsumi, Panasonic, Philips), other
71 manufacturers adopted an existing electrical interface and changed
72 the functionality (CreativeLabs/SoundBlaster, Teac, Funai) or simply
73 adapted their drives to one or more of the already existing electrical
74 interfaces (Aztech, Sanyo, Funai, Vertos, Longshine, Optics Storage and
75 most of the `NoName' manufacturers). In cases where a new drive really
76 brought its own interface or used its own command set and flow control
77 scheme, either a separate driver had to be written, or an existing
78 driver had to be enhanced. History has delivered us \cdrom\ support for
79 many of these different interfaces. Nowadays, almost all new \cdrom\
80 drives are either IDE/ATAPI or SCSI, and it is very unlikely that any
81 manufacturer will create a new interface. Even finding drives for the
82 old proprietary interfaces is getting difficult.
83
84 When (in the 1.3.70's) I looked at the existing software interface,
85 which was expressed through \cdromh, it appeared to be a rather wild
86 set of commands and data formats.\footnote{I cannot recollect what
87 kernel version I looked at, then, presumably 1.2.13 and 1.3.34---the
88 latest kernel that I was indirectly involved in.} It seemed that many
89 features of the software interface had been added to accommodate the
90 capabilities of a particular drive, in an {\fo ad hoc\/} manner. More
91 importantly, it appeared that the behavior of the `standard' commands
92 was different for most of the different drivers: \eg, some drivers
93 close the tray if an $open()$ call occurs when the tray is open, while
94 others do not. Some drivers lock the door upon opening the device, to
95 prevent an incoherent file system, but others don't, to allow software
96 ejection. Undoubtedly, the capabilities of the different drives vary,
97 but even when two drives have the same capability their drivers'
98 behavior was usually different.
99
100 I decided to start a discussion on how to make all the \linux\ \cdrom\
101 drivers behave more uniformly. I began by contacting the developers of
102 the many \cdrom\ drivers found in the \linux\ kernel. Their reactions
103 encouraged me to write the \UCD\ which this document is intended to
104 describe. The implementation of the \UCD\ is in the file \cdromc. This
105 driver is intended to be an additional software layer that sits on top
106 of the low-level device drivers for each \cdrom\ drive. By adding this
107 additional layer, it is possible to have all the different \cdrom\
108 devices behave {\em exactly\/} the same (insofar as the underlying
109 hardware will allow).
110
111 The goal of the \UCD\ is {\em not\/} to alienate driver developers who
112 have not yet taken steps to support this effort. The goal of \UCD\ is
113 simply to give people writing application programs for \cdrom\ drives
114 {\em one\/} \linux\ \cdrom\ interface with consistent behavior for all
115 \cdrom\ devices. In addition, this also provides a consistent interface
116 between the low-level device driver code and the \linux\ kernel. Care
117 is taken that 100\,\% compatibility exists with the data structures and
118 programmer's interface defined in \cdromh. This guide was written to
119 help \cdrom\ driver developers adapt their code to use the \UCD\ code
120 defined in \cdromc.
121
122 Personally, I think that the most important hardware interfaces are
123 the IDE/ATAPI drives and, of course, the SCSI drives, but as prices
124 of hardware drop continuously, it is also likely that people may have
125 more than one \cdrom\ drive, possibly of mixed types. It is important
126 that these drives behave in the same way. In December 1994, one of the
127 cheapest \cdrom\ drives was a Philips cm206, a double-speed proprietary
128 drive. In the months that I was busy writing a \linux\ driver for it,
129 proprietary drives became obsolete and IDE/ATAPI drives became the
130 standard. At the time of the last update to this document (November
131 1997) it is becoming difficult to even {\em find} anything less than a
132 16 speed \cdrom\ drive, and 24 speed drives are common.
133
134 \newsection{Standardizing through another software level}
135 \label{cdrom.c}
136
137 At the time this document was conceived, all drivers directly
138 implemented the \cdrom\ $ioctl()$ calls through their own routines. This
139 led to the danger of different drivers forgetting to do important things
140 like checking that the user was giving the driver valid data. More
141 importantly, this led to the divergence of behavior, which has already
142 been discussed.
143
144 For this reason, the \UCD\ was created to enforce consistent \cdrom\
145 drive behavior, and to provide a common set of services to the various
146 low-level \cdrom\ device drivers. The \UCD\ now provides another
147 software-level, that separates the $ioctl()$ and $open()$ implementation
148 from the actual hardware implementation. Note that this effort has
149 made few changes which will affect a user's application programs. The
150 greatest change involved moving the contents of the various low-level
151 \cdrom\ drivers' header files to the kernel's cdrom directory. This was
152 done to help ensure that the user is only presented with only one cdrom
153 interface, the interface defined in \cdromh.
154
155 \cdrom\ drives are specific enough (\ie, different from other
156 block-devices such as floppy or hard disc drives), to define a set
157 of common {\em \cdrom\ device operations}, $<cdrom-device>_dops$.
158 These operations are different from the classical block-device file
159 operations, $<block-device>_fops$.
160
161 The routines for the \UCD\ interface level are implemented in the file
162 \cdromc. In this file, the \UCD\ interfaces with the kernel as a block
163 device by registering the following general $struct\ file_operations$:
164 $$
165 \halign{$#$\ \hfil&$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
166 struct& file_operations\ cdrom_fops = \{\hidewidth\cr
167         &NULL,                  & lseek \cr
168         &block_read,            & read---general block-dev read \cr
169         &block_write,           & write---general block-dev write \cr
170         &NULL,                  & readdir \cr
171         &NULL,                  & select \cr
172         &cdrom_ioctl,           & ioctl \cr
173         &NULL,                  & mmap \cr
174         &cdrom_open,            & open \cr
175         &cdrom_release,         & release \cr
176         &NULL,                  & fsync \cr
177         &NULL,                  & fasync \cr
178         &cdrom_media_changed,   & media change \cr
179         &NULL                   & revalidate \cr
180 \};\cr
181 }
182 $$ 
183
184 Every active \cdrom\ device shares this $struct$. The routines
185 declared above are all implemented in \cdromc, since this file is the
186 place where the behavior of all \cdrom-devices is defined and
187 standardized. The actual interface to the various types of \cdrom\ 
188 hardware is still performed by various low-level \cdrom-device
189 drivers. These routines simply implement certain {\em capabilities\/}
190 that are common to all \cdrom\ (and really, all removable-media
191 devices).
192
193 Registration of a low-level \cdrom\ device driver is now done through
194 the general routines in \cdromc, not through the Virtual File System
195 (VFS) any more. The interface implemented in \cdromc\ is carried out
196 through two general structures that contain information about the
197 capabilities of the driver, and the specific drives on which the
198 driver operates. The structures are:
199 \begin{description}
200 \item[$cdrom_device_ops$] 
201   This structure contains information about the low-level driver for a
202   \cdrom\ device. This structure is conceptually connected to the major
203   number of the device (although some drivers may have different
204   major numbers, as is the case for the IDE driver).
205 \item[$cdrom_device_info$] 
206   This structure contains information about a particular \cdrom\ drive,
207   such as its device name, speed, etc. This structure is conceptually
208   connected to the minor number of the device.
209 \end{description}
210
211 Registering a particular \cdrom\ drive with the \UCD\ is done by the
212 low-level device driver though a call to:
213 $$register_cdrom(struct\ cdrom_device_info * <device>_info)  
214 $$
215 The device information structure, $<device>_info$, contains all the
216 information needed for the kernel to interface with the low-level
217 \cdrom\ device driver. One of the most important entries in this
218 structure is a pointer to the $cdrom_device_ops$ structure of the
219 low-level driver.
220
221 The device operations structure, $cdrom_device_ops$, contains a list
222 of pointers to the functions which are implemented in the low-level
223 device driver. When \cdromc\ accesses a \cdrom\ device, it does it
224 through the functions in this structure. It is impossible to know all
225 the capabilities of future \cdrom\ drives, so it is expected that this
226 list may need to be expanded from time to time as new technologies are
227 developed. For example, CD-R and CD-R/W drives are beginning to become
228 popular, and support will soon need to be added for them. For now, the
229 current $struct$ is:
230 $$
231 \halign{$#$\ \hfil&$#$\ \hfil&\hbox to 10em{$#$\hss}&
232   $/*$ \rm# $*/$\hfil\cr
233 struct& cdrom_device_ops\ \{ \hidewidth\cr
234   &int& (* open)(struct\ cdrom_device_info *, int)\cr
235   &void& (* release)(struct\ cdrom_device_info *);\cr 
236   &int& (* drive_status)(struct\ cdrom_device_info *, int);\cr     
237   &unsigned\ int& (* check_events)(struct\ cdrom_device_info *, unsigned\ int, int);\cr
238   &int& (* media_changed)(struct\ cdrom_device_info *, int);\cr 
239   &int& (* tray_move)(struct\ cdrom_device_info *, int);\cr
240   &int& (* lock_door)(struct\ cdrom_device_info *, int);\cr
241   &int& (* select_speed)(struct\ cdrom_device_info *, int);\cr
242   &int& (* select_disc)(struct\ cdrom_device_info *, int);\cr
243   &int& (* get_last_session) (struct\ cdrom_device_info *, 
244         struct\ cdrom_multisession *{});\cr
245   &int& (* get_mcn)(struct\ cdrom_device_info *, struct\ cdrom_mcn *{});\cr
246   &int& (* reset)(struct\ cdrom_device_info *);\cr
247   &int& (* audio_ioctl)(struct\ cdrom_device_info *, unsigned\ int, 
248         void *{});\cr 
249 \noalign{\medskip}
250   &const\ int& capability;& capability flags \cr
251   &int& (* generic_packet)(struct\ cdrom_device_info *, struct\ packet_command *{});\cr
252 \};\cr
253 }
254 $$
255 When a low-level device driver implements one of these capabilities,
256 it should add a function pointer to this $struct$. When a particular
257 function is not implemented, however, this $struct$ should contain a
258 NULL instead. The $capability$ flags specify the capabilities of the
259 \cdrom\ hardware and/or low-level \cdrom\ driver when a \cdrom\ drive
260 is registered with the \UCD.
261
262 Note that most functions have fewer parameters than their
263 $blkdev_fops$ counterparts. This is because very little of the
264 information in the structures $inode$ and $file$ is used. For most
265 drivers, the main parameter is the $struct$ $cdrom_device_info$, from
266 which the major and minor number can be extracted. (Most low-level
267 \cdrom\ drivers don't even look at the major and minor number though,
268 since many of them only support one device.) This will be available
269 through $dev$ in $cdrom_device_info$ described below.
270
271 The drive-specific, minor-like information that is registered with
272 \cdromc, currently contains the following fields:
273 $$
274 \halign{$#$\ \hfil&$#$\ \hfil&\hbox to 10em{$#$\hss}&
275   $/*$ \rm# $*/$\hfil\cr
276 struct& cdrom_device_info\ \{ \hidewidth\cr
277   & const\ struct\ cdrom_device_ops *& ops;& device operations for this major\cr
278   & struct\ list_head& list;& linked list of all device_info\cr
279   & struct\ gendisk *& disk;& matching block layer disk\cr
280   & void *&  handle;& driver-dependent data\cr
281 \noalign{\medskip}
282   & int& mask;& mask of capability: disables them \cr
283   & int& speed;& maximum speed for reading data \cr
284   & int& capacity;& number of discs in a jukebox \cr
285 \noalign{\medskip}
286   &unsigned\ int& options : 30;& options flags \cr
287   &unsigned& mc_flags : 2;& media-change buffer flags \cr
288   &unsigned\ int& vfs_events;& cached events for vfs path\cr
289   &unsigned\ int& ioctl_events;& cached events for ioctl path\cr
290   & int& use_count;& number of times device is opened\cr
291   & char& name[20];& name of the device type\cr
292 \noalign{\medskip}
293   &__u8& sanyo_slot : 2;& Sanyo 3-CD changer support\cr
294   &__u8& keeplocked : 1;& CDROM_LOCKDOOR status\cr
295   &__u8& reserved : 5;& not used yet\cr
296   & int& cdda_method;& see CDDA_* flags\cr
297   &__u8& last_sense;& saves last sense key\cr
298   &__u8& media_written;& dirty flag, DVD+RW bookkeeping\cr
299   &unsigned\ short& mmc3_profile;& current MMC3 profile\cr
300   & int& for_data;& unknown:TBD\cr
301   & int\ (* exit)\ (struct\ cdrom_device_info *);&& unknown:TBD\cr
302   & int& mrw_mode_page;& which MRW mode page is in use\cr
303 \}\cr
304 }$$
305 Using this $struct$, a linked list of the registered minor devices is
306 built, using the $next$ field. The device number, the device operations
307 struct and specifications of properties of the drive are stored in this
308 structure.
309
310 The $mask$ flags can be used to mask out some of the capabilities listed
311 in $ops\to capability$, if a specific drive doesn't support a feature
312 of the driver. The value $speed$ specifies the maximum head-rate of the
313 drive, measured in units of normal audio speed (176\,kB/sec raw data or
314 150\,kB/sec file system data).  The parameters are declared $const$
315 because they describe properties of the drive, which don't change after
316 registration.
317
318 A few registers contain variables local to the \cdrom\ drive. The
319 flags $options$ are used to specify how the general \cdrom\ routines
320 should behave. These various flags registers should provide enough
321 flexibility to adapt to the different users' wishes (and {\em not\/} the
322 `arbitrary' wishes of the author of the low-level device driver, as is
323 the case in the old scheme). The register $mc_flags$ is used to buffer
324 the information from $media_changed()$ to two separate queues. Other
325 data that is specific to a minor drive, can be accessed through $handle$,
326 which can point to a data structure specific to the low-level driver.
327 The fields $use_count$, $next$, $options$ and $mc_flags$ need not be
328 initialized.
329
330 The intermediate software layer that \cdromc\ forms will perform some
331 additional bookkeeping. The use count of the device (the number of
332 processes that have the device opened) is registered in $use_count$. The
333 function $cdrom_ioctl()$ will verify the appropriate user-memory regions
334 for read and write, and in case a location on the CD is transferred,
335 it will `sanitize' the format by making requests to the low-level
336 drivers in a standard format, and translating all formats between the
337 user-software and low level drivers. This relieves much of the drivers'
338 memory checking and format checking and translation. Also, the necessary
339 structures will be declared on the program stack.
340
341 The implementation of the functions should be as defined in the
342 following sections. Two functions {\em must\/} be implemented, namely
343 $open()$ and $release()$. Other functions may be omitted, their
344 corresponding capability flags will be cleared upon registration.
345 Generally, a function returns zero on success and negative on error. A
346 function call should return only after the command has completed, but of
347 course waiting for the device should not use processor time.
348
349 \subsection{$Int\ open(struct\ cdrom_device_info * cdi, int\ purpose)$}
350
351 $Open()$ should try to open the device for a specific $purpose$, which
352 can be either:
353 \begin{itemize}
354 \item[0] Open for reading data, as done by {\tt {mount()}} (2), or the
355 user commands {\tt {dd}} or {\tt {cat}}.  
356 \item[1] Open for $ioctl$ commands, as done by audio-CD playing
357 programs.
358 \end{itemize}
359 Notice that any strategic code (closing tray upon $open()$, etc.)\ is
360 done by the calling routine in \cdromc, so the low-level routine
361 should only be concerned with proper initialization, such as spinning
362 up the disc, etc. % and device-use count
363
364
365 \subsection{$Void\ release(struct\ cdrom_device_info * cdi)$}
366
367
368 Device-specific actions should be taken such as spinning down the device.
369 However, strategic actions such as ejection of the tray, or unlocking
370 the door, should be left over to the general routine $cdrom_release()$.
371 This is the only function returning type $void$.
372
373 \subsection{$Int\ drive_status(struct\ cdrom_device_info * cdi, int\ slot_nr)$}
374 \label{drive status}
375
376 The function $drive_status$, if implemented, should provide
377 information on the status of the drive (not the status of the disc,
378 which may or may not be in the drive). If the drive is not a changer,
379 $slot_nr$ should be ignored. In \cdromh\ the possibilities are listed: 
380 $$
381 \halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
382 CDS_NO_INFO& no information available\cr
383 CDS_NO_DISC& no disc is inserted, tray is closed\cr
384 CDS_TRAY_OPEN& tray is opened\cr
385 CDS_DRIVE_NOT_READY& something is wrong, tray is moving?\cr
386 CDS_DISC_OK& a disc is loaded and everything is fine\cr
387 }
388 $$
389
390 \subsection{$Int\ media_changed(struct\ cdrom_device_info * cdi, int\ disc_nr)$}
391
392 This function is very similar to the original function in $struct\ 
393 file_operations$. It returns 1 if the medium of the device $cdi\to
394 dev$ has changed since the last call, and 0 otherwise. The parameter
395 $disc_nr$ identifies a specific slot in a juke-box, it should be
396 ignored for single-disc drives.  Note that by `re-routing' this
397 function through $cdrom_media_changed()$, we can implement separate
398 queues for the VFS and a new $ioctl()$ function that can report device
399 changes to software (\eg, an auto-mounting daemon).
400
401 \subsection{$Int\ tray_move(struct\ cdrom_device_info * cdi, int\ position)$}
402
403 This function, if implemented, should control the tray movement. (No
404 other function should control this.) The parameter $position$ controls
405 the desired direction of movement:
406 \begin{itemize}
407 \item[0] Close tray
408 \item[1] Open tray
409 \end{itemize}
410 This function returns 0 upon success, and a non-zero value upon
411 error. Note that if the tray is already in the desired position, no
412 action need be taken, and the return value should be 0. 
413
414 \subsection{$Int\ lock_door(struct\ cdrom_device_info * cdi, int\ lock)$}
415
416 This function (and no other code) controls locking of the door, if the
417 drive allows this. The value of $lock$ controls the desired locking
418 state:
419 \begin{itemize}
420 \item[0] Unlock door, manual opening is allowed
421 \item[1] Lock door, tray cannot be ejected manually
422 \end{itemize}
423 This function returns 0 upon success, and a non-zero value upon
424 error. Note that if the door is already in the requested state, no
425 action need be taken, and the return value should be 0. 
426
427 \subsection{$Int\ select_speed(struct\ cdrom_device_info * cdi, int\ speed)$}
428
429 Some \cdrom\ drives are capable of changing their head-speed. There
430 are several reasons for changing the speed of a \cdrom\ drive. Badly
431 pressed \cdrom s may benefit from less-than-maximum head rate. Modern
432 \cdrom\ drives can obtain very high head rates (up to $24\times$ is
433 common).  It has been reported that these drives can make reading
434 errors at these high speeds, reducing the speed can prevent data loss
435 in these circumstances.  Finally, some of these drives can
436 make an annoyingly loud noise, which a lower speed may reduce. %Finally,
437 %although the audio-low-pass filters probably aren't designed for it,
438 %more than real-time playback of audio might be used for high-speed
439 %copying of audio tracks.
440
441 This function specifies the speed at which data is read or audio is
442 played back. The value of $speed$ specifies the head-speed of the
443 drive, measured in units of standard cdrom speed (176\,kB/sec raw data
444 or 150\,kB/sec file system data). So to request that a \cdrom\ drive
445 operate at 300\,kB/sec you would call the CDROM_SELECT_SPEED $ioctl$
446 with $speed=2$. The special value `0' means `auto-selection', \ie,
447 maximum data-rate or real-time audio rate. If the drive doesn't have
448 this `auto-selection' capability, the decision should be made on the
449 current disc loaded and the return value should be positive. A negative
450 return value indicates an error.
451
452 \subsection{$Int\ select_disc(struct\ cdrom_device_info * cdi, int\ number)$}
453
454 If the drive can store multiple discs (a juke-box) this function
455 will perform disc selection. It should return the number of the
456 selected disc on success, a negative value on error. Currently, only
457 the ide-cd driver supports this functionality.
458
459 \subsection{$Int\ get_last_session(struct\ cdrom_device_info * cdi, struct\
460   cdrom_multisession * ms_info)$}
461
462 This function should implement the old corresponding $ioctl()$. For
463 device $cdi\to dev$, the start of the last session of the current disc
464 should be returned in the pointer argument $ms_info$. Note that
465 routines in \cdromc\ have sanitized this argument: its requested
466 format will {\em always\/} be of the type $CDROM_LBA$ (linear block
467 addressing mode), whatever the calling software requested. But
468 sanitization goes even further: the low-level implementation may
469 return the requested information in $CDROM_MSF$ format if it wishes so
470 (setting the $ms_info\rightarrow addr_format$ field appropriately, of
471 course) and the routines in \cdromc\ will make the transformation if
472 necessary. The return value is 0 upon success.
473
474 \subsection{$Int\ get_mcn(struct\ cdrom_device_info * cdi, struct\
475   cdrom_mcn * mcn)$}
476
477 Some discs carry a `Media Catalog Number' (MCN), also called
478 `Universal Product Code' (UPC). This number should reflect the number
479 that is generally found in the bar-code on the product. Unfortunately,
480 the few discs that carry such a number on the disc don't even use the
481 same format. The return argument to this function is a pointer to a
482 pre-declared memory region of type $struct\ cdrom_mcn$. The MCN is
483 expected as a 13-character string, terminated by a null-character.
484
485 \subsection{$Int\ reset(struct\ cdrom_device_info * cdi)$}
486
487 This call should perform a hard-reset on the drive (although in
488 circumstances that a hard-reset is necessary, a drive may very well not
489 listen to commands anymore). Preferably, control is returned to the
490 caller only after the drive has finished resetting. If the drive is no
491 longer listening, it may be wise for the underlying low-level cdrom
492 driver to time out.
493
494 \subsection{$Int\ audio_ioctl(struct\ cdrom_device_info * cdi, unsigned\
495   int\ cmd, void * arg)$}
496
497 Some of the \cdrom-$ioctl$s defined in \cdromh\ can be
498 implemented by the routines described above, and hence the function
499 $cdrom_ioctl$ will use those. However, most $ioctl$s deal with
500 audio-control. We have decided to leave these to be accessed through a
501 single function, repeating the arguments $cmd$ and $arg$. Note that
502 the latter is of type $void*{}$, rather than $unsigned\ long\
503 int$. The routine $cdrom_ioctl()$ does do some useful things,
504 though. It sanitizes the address format type to $CDROM_MSF$ (Minutes,
505 Seconds, Frames) for all audio calls. It also verifies the memory
506 location of $arg$, and reserves stack-memory for the argument. This
507 makes implementation of the $audio_ioctl()$ much simpler than in the
508 old driver scheme. For example, you may look up the function
509 $cm206_audio_ioctl()$ in {\tt {cm206.c}} that should be updated with
510 this documentation. 
511
512 An unimplemented ioctl should return $-ENOSYS$, but a harmless request
513 (\eg, $CDROMSTART$) may be ignored by returning 0 (success). Other
514 errors should be according to the standards, whatever they are. When
515 an error is returned by the low-level driver, the \UCD\ tries whenever
516 possible to return the error code to the calling program. (We may decide
517 to sanitize the return value in $cdrom_ioctl()$ though, in order to
518 guarantee a uniform interface to the audio-player software.)
519
520 \subsection{$Int\ dev_ioctl(struct\ cdrom_device_info * cdi, unsigned\ int\
521   cmd, unsigned\ long\ arg)$}
522
523 Some $ioctl$s seem to be specific to certain \cdrom\ drives. That is,
524 they are introduced to service some capabilities of certain drives. In
525 fact, there are 6 different $ioctl$s for reading data, either in some
526 particular kind of format, or audio data. Not many drives support
527 reading audio tracks as data, I believe this is because of protection
528 of copyrights of artists. Moreover, I think that if audio-tracks are
529 supported, it should be done through the VFS and not via $ioctl$s. A
530 problem here could be the fact that audio-frames are 2352 bytes long,
531 so either the audio-file-system should ask for 75264 bytes at once
532 (the least common multiple of 512 and 2352), or the drivers should
533 bend their backs to cope with this incoherence (to which I would be
534 opposed).  Furthermore, it is very difficult for the hardware to find
535 the exact frame boundaries, since there are no synchronization headers
536 in audio frames.  Once these issues are resolved, this code should be
537 standardized in \cdromc.
538
539 Because there are so many $ioctl$s that seem to be introduced to
540 satisfy certain drivers,\footnote{Is there software around that
541   actually uses these? I'd be interested!} any `non-standard' $ioctl$s
542 are routed through the call $dev_ioctl()$. In principle, `private'
543 $ioctl$s should be numbered after the device's major number, and not
544 the general \cdrom\ $ioctl$ number, {\tt {0x53}}. Currently the
545 non-supported $ioctl$s are: {\it CDROMREADMODE1, CDROMREADMODE2,
546   CDROMREADAUDIO, CDROMREADRAW, CDROMREADCOOKED, CDROMSEEK,
547   CDROMPLAY\-BLK and CDROM\-READALL}.
548
549
550 \subsection{\cdrom\ capabilities}
551 \label{capability}
552
553 Instead of just implementing some $ioctl$ calls, the interface in
554 \cdromc\ supplies the possibility to indicate the {\em capabilities\/}
555 of a \cdrom\ drive. This can be done by ORing any number of
556 capability-constants that are defined in \cdromh\ at the registration
557 phase. Currently, the capabilities are any of:
558 $$
559 \halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
560 CDC_CLOSE_TRAY& can close tray by software control\cr
561 CDC_OPEN_TRAY& can open tray\cr
562 CDC_LOCK& can lock and unlock the door\cr
563 CDC_SELECT_SPEED& can select speed, in units of $\sim$150\,kB/s\cr
564 CDC_SELECT_DISC& drive is juke-box\cr
565 CDC_MULTI_SESSION& can read sessions $>\rm1$\cr
566 CDC_MCN& can read Media Catalog Number\cr
567 CDC_MEDIA_CHANGED& can report if disc has changed\cr
568 CDC_PLAY_AUDIO& can perform audio-functions (play, pause, etc)\cr
569 CDC_RESET& hard reset device\cr
570 CDC_IOCTLS& driver has non-standard ioctls\cr
571 CDC_DRIVE_STATUS& driver implements drive status\cr
572 }
573 $$
574 The capability flag is declared $const$, to prevent drivers from
575 accidentally tampering with the contents. The capability fags actually
576 inform \cdromc\ of what the driver can do. If the drive found
577 by the driver does not have the capability, is can be masked out by
578 the $cdrom_device_info$ variable $mask$. For instance, the SCSI \cdrom\
579 driver has implemented the code for loading and ejecting \cdrom's, and
580 hence its corresponding flags in $capability$ will be set. But a SCSI
581 \cdrom\ drive might be a caddy system, which can't load the tray, and
582 hence for this drive the $cdrom_device_info$ struct will have set
583 the $CDC_CLOSE_TRAY$ bit in $mask$.
584
585 In the file \cdromc\ you will encounter many constructions of the type
586 $$\it
587 if\ (cdo\rightarrow capability \mathrel\& \mathord{\sim} cdi\rightarrow mask 
588    \mathrel{\&} CDC_<capability>) \ldots
589 $$
590 There is no $ioctl$ to set the mask\dots The reason is that
591 I think it is better to control the {\em behavior\/} rather than the
592 {\em capabilities}.
593
594 \subsection{Options}
595
596 A final flag register controls the {\em behavior\/} of the \cdrom\
597 drives, in order to satisfy different users' wishes, hopefully
598 independently of the ideas of the respective author who happened to
599 have made the drive's support available to the \linux\ community. The
600 current behavior options are:
601 $$
602 \halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
603 CDO_AUTO_CLOSE& try to close tray upon device $open()$\cr
604 CDO_AUTO_EJECT& try to open tray on last device $close()$\cr
605 CDO_USE_FFLAGS& use $file_pointer\rightarrow f_flags$ to indicate
606  purpose for $open()$\cr
607 CDO_LOCK& try to lock door if device is opened\cr
608 CDO_CHECK_TYPE& ensure disc type is data if opened for data\cr
609 }
610 $$
611
612 The initial value of this register is $CDO_AUTO_CLOSE \mathrel|
613 CDO_USE_FFLAGS \mathrel| CDO_LOCK$, reflecting my own view on user
614 interface and software standards. Before you protest, there are two
615 new $ioctl$s implemented in \cdromc, that allow you to control the
616 behavior by software. These are:
617 $$
618 \halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
619 CDROM_SET_OPTIONS& set options specified in $(int)\ arg$\cr
620 CDROM_CLEAR_OPTIONS& clear options specified in $(int)\ arg$\cr
621 }
622 $$
623 One option needs some more explanation: $CDO_USE_FFLAGS$. In the next
624 newsection we explain what the need for this option is.
625
626 A software package {\tt setcd}, available from the Debian distribution
627 and {\tt sunsite.unc.edu}, allows user level control of these flags. 
628
629 \newsection{The need to know the purpose of opening the \cdrom\ device}
630
631 Traditionally, Unix devices can be used in two different `modes',
632 either by reading/writing to the device file, or by issuing
633 controlling commands to the device, by the device's $ioctl()$
634 call. The problem with \cdrom\ drives, is that they can be used for
635 two entirely different purposes. One is to mount removable
636 file systems, \cdrom s, the other is to play audio CD's. Audio commands
637 are implemented entirely through $ioctl$s, presumably because the
638 first implementation (SUN?) has been such. In principle there is
639 nothing wrong with this, but a good control of the `CD player' demands
640 that the device can {\em always\/} be opened in order to give the
641 $ioctl$ commands, regardless of the state the drive is in. 
642
643 On the other hand, when used as a removable-media disc drive (what the
644 original purpose of \cdrom s is) we would like to make sure that the
645 disc drive is ready for operation upon opening the device. In the old
646 scheme, some \cdrom\ drivers don't do any integrity checking, resulting
647 in a number of i/o errors reported by the VFS to the kernel when an
648 attempt for mounting a \cdrom\ on an empty drive occurs. This is not a
649 particularly elegant way to find out that there is no \cdrom\ inserted;
650 it more-or-less looks like the old IBM-PC trying to read an empty floppy
651 drive for a couple of seconds, after which the system complains it
652 can't read from it. Nowadays we can {\em sense\/} the existence of a
653 removable medium in a drive, and we believe we should exploit that
654 fact. An integrity check on opening of the device, that verifies the
655 availability of a \cdrom\ and its correct type (data), would be
656 desirable.
657
658 These two ways of using a \cdrom\ drive, principally for data and
659 secondarily for playing audio discs, have different demands for the
660 behavior of the $open()$ call. Audio use simply wants to open the
661 device in order to get a file handle which is needed for issuing
662 $ioctl$ commands, while data use wants to open for correct and
663 reliable data transfer. The only way user programs can indicate what
664 their {\em purpose\/} of opening the device is, is through the $flags$
665 parameter (see {\tt {open(2)}}). For \cdrom\ devices, these flags aren't
666 implemented (some drivers implement checking for write-related flags,
667 but this is not strictly necessary if the device file has correct
668 permission flags). Most option flags simply don't make sense to
669 \cdrom\ devices: $O_CREAT$, $O_NOCTTY$, $O_TRUNC$, $O_APPEND$, and
670 $O_SYNC$ have no meaning to a \cdrom. 
671
672 We therefore propose to use the flag $O_NONBLOCK$ to indicate
673 that the device is opened just for issuing $ioctl$
674 commands. Strictly, the meaning of $O_NONBLOCK$ is that opening and
675 subsequent calls to the device don't cause the calling process to
676 wait. We could interpret this as ``don't wait until someone has
677 inserted some valid data-\cdrom.'' Thus, our proposal of the
678 implementation for the $open()$ call for \cdrom s is:
679 \begin{itemize}
680 \item If no other flags are set than $O_RDONLY$, the device is opened
681 for data transfer, and the return value will be 0 only upon successful
682 initialization of the transfer. The call may even induce some actions
683 on the \cdrom, such as closing the tray.  
684 \item If the option flag $O_NONBLOCK$ is set, opening will always be
685 successful, unless the whole device doesn't exist. The drive will take
686 no actions whatsoever. 
687 \end{itemize}
688
689 \subsection{And what about standards?}
690
691 You might hesitate to accept this proposal as it comes from the
692 \linux\ community, and not from some standardizing institute. What
693 about SUN, SGI, HP and all those other Unix and hardware vendors?
694 Well, these companies are in the lucky position that they generally
695 control both the hardware and software of their supported products,
696 and are large enough to set their own standard. They do not have to
697 deal with a dozen or more different, competing hardware
698 configurations.\footnote{Incidentally, I think that SUN's approach to
699 mounting \cdrom s is very good in origin: under Solaris a
700 volume-daemon automatically mounts a newly inserted \cdrom\ under {\tt
701 {/cdrom/$<volume-name>$/}}. In my opinion they should have pushed this
702 further and have {\em every\/} \cdrom\ on the local area network be
703 mounted at the similar location, \ie, no matter in which particular
704 machine you insert a \cdrom, it will always appear at the same
705 position in the directory tree, on every system. When I wanted to
706 implement such a user-program for \linux, I came across the
707 differences in behavior of the various drivers, and the need for an
708 $ioctl$ informing about media changes.}
709
710 We believe that using $O_NONBLOCK$ to indicate that a device is being opened
711 for $ioctl$ commands only can be easily introduced in the \linux\
712 community. All the CD-player authors will have to be informed, we can
713 even send in our own patches to the programs. The use of $O_NONBLOCK$
714 has most likely no influence on the behavior of the CD-players on
715 other operating systems than \linux. Finally, a user can always revert
716 to old behavior by a call to $ioctl(file_descriptor, CDROM_CLEAR_OPTIONS,
717 CDO_USE_FFLAGS)$. 
718
719 \subsection{The preferred strategy of $open()$}
720
721 The routines in \cdromc\ are designed in such a way that run-time
722 configuration of the behavior of \cdrom\ devices (of {\em any\/} type)
723 can be carried out, by the $CDROM_SET/CLEAR_OPTIONS$ $ioctls$. Thus, various
724 modes of operation can be set:
725 \begin{description}
726 \item[$CDO_AUTO_CLOSE \mathrel| CDO_USE_FFLAGS \mathrel| CDO_LOCK$] This
727 is the default setting. (With $CDO_CHECK_TYPE$ it will be better, in the
728 future.) If the device is not yet opened by any other process, and if
729 the device is being opened for data ($O_NONBLOCK$ is not set) and the
730 tray is found to be open, an attempt to close the tray is made. Then,
731 it is verified that a disc is in the drive and, if $CDO_CHECK_TYPE$ is
732 set, that it contains tracks of type `data mode 1.' Only if all tests
733 are passed is the return value zero. The door is locked to prevent file
734 system corruption. If the drive is opened for audio ($O_NONBLOCK$ is
735 set), no actions are taken and a value of 0 will be returned. 
736 \item[$CDO_AUTO_CLOSE \mathrel| CDO_AUTO_EJECT \mathrel| CDO_LOCK$] This
737 mimics the behavior of the current sbpcd-driver. The option flags are
738 ignored, the tray is closed on the first open, if necessary. Similarly,
739 the tray is opened on the last release, \ie, if a \cdrom\ is unmounted,
740 it is automatically ejected, such that the user can replace it.
741 \end{description} 
742 We hope that these option can convince everybody (both driver
743 maintainers and user program developers) to adopt the new \cdrom\
744 driver scheme and option flag interpretation.
745
746 \newsection{Description of routines in \cdromc}
747
748 Only a few routines in \cdromc\ are exported to the drivers. In this
749 new section we will discuss these, as well as the functions that `take
750 over' the \cdrom\ interface to the kernel. The header file belonging
751 to \cdromc\ is called \cdromh. Formerly, some of the contents of this
752 file were placed in the file {\tt {ucdrom.h}}, but this file has now been
753 merged back into \cdromh.
754
755 \subsection{$Struct\ file_operations\ cdrom_fops$}
756
757 The contents of this structure were described in section~\ref{cdrom.c}.
758 A pointer to this structure is assigned to the $fops$ field
759 of the $struct gendisk$.
760
761 \subsection{$Int\ register_cdrom( struct\ cdrom_device_info\ * cdi)$}
762
763 This function is used in about the same way one registers $cdrom_fops$
764 with the kernel, the device operations and information structures,
765 as described in section~\ref{cdrom.c}, should be registered with the
766 \UCD:
767 $$
768 register_cdrom(\&<device>_info));
769 $$
770 This function returns zero upon success, and non-zero upon
771 failure. The structure $<device>_info$ should have a pointer to the
772 driver's $<device>_dops$, as in 
773 $$
774 \vbox{\halign{&$#$\hfil\cr
775 struct\ &cdrom_device_info\ <device>_info = \{\cr
776 & <device>_dops;\cr
777 &\ldots\cr
778 \}\cr
779 }}$$
780 Note that a driver must have one static structure, $<device>_dops$, while
781 it may have as many structures $<device>_info$ as there are minor devices
782 active. $Register_cdrom()$ builds a linked list from these. 
783
784 \subsection{$Void\ unregister_cdrom(struct\ cdrom_device_info * cdi)$}
785
786 Unregistering device $cdi$ with minor number $MINOR(cdi\to dev)$ removes
787 the minor device from the list. If it was the last registered minor for
788 the low-level driver, this disconnects the registered device-operation
789 routines from the \cdrom\ interface. This function returns zero upon
790 success, and non-zero upon failure.
791
792 \subsection{$Int\ cdrom_open(struct\ inode * ip, struct\ file * fp)$}
793
794 This function is not called directly by the low-level drivers, it is
795 listed in the standard $cdrom_fops$. If the VFS opens a file, this
796 function becomes active. A strategy is implemented in this routine,
797 taking care of all capabilities and options that are set in the
798 $cdrom_device_ops$ connected to the device. Then, the program flow is
799 transferred to the device_dependent $open()$ call.
800
801 \subsection{$Void\ cdrom_release(struct\ inode *ip, struct\ file
802 *fp)$}
803
804 This function implements the reverse-logic of $cdrom_open()$, and then
805 calls the device-dependent $release()$ routine. When the use-count has
806 reached 0, the allocated buffers are flushed by calls to $sync_dev(dev)$
807 and $invalidate_buffers(dev)$.
808
809
810 \subsection{$Int\ cdrom_ioctl(struct\ inode *ip, struct\ file *fp,
811 unsigned\ int\ cmd, unsigned\ long\ arg)$}
812 \label{cdrom-ioctl}
813
814 This function handles all the standard $ioctl$ requests for \cdrom\
815 devices in a uniform way. The different calls fall into three
816 categories: $ioctl$s that can be directly implemented by device
817 operations, ones that are routed through the call $audio_ioctl()$, and
818 the remaining ones, that are presumable device-dependent. Generally, a
819 negative return value indicates an error.
820
821 \subsubsection{Directly implemented $ioctl$s}
822 \label{ioctl-direct}
823
824 The following `old' \cdrom-$ioctl$s are implemented by directly
825 calling device-operations in $cdrom_device_ops$, if implemented and
826 not masked:
827 \begin{description}
828 \item[CDROMMULTISESSION] Requests the last session on a \cdrom.
829 \item[CDROMEJECT] Open tray. 
830 \item[CDROMCLOSETRAY] Close tray.
831 \item[CDROMEJECT_SW] If $arg\not=0$, set behavior to auto-close (close
832 tray on first open) and auto-eject (eject on last release), otherwise
833 set behavior to non-moving on $open()$ and $release()$ calls.
834 \item[CDROM_GET_MCN] Get the Media Catalog Number from a CD.
835 \end{description}
836
837 \subsubsection{$Ioctl$s routed through $audio_ioctl()$}
838 \label{ioctl-audio}
839
840 The following set of $ioctl$s are all implemented through a call to
841 the $cdrom_fops$ function $audio_ioctl()$. Memory checks and
842 allocation are performed in $cdrom_ioctl()$, and also sanitization of
843 address format ($CDROM_LBA$/$CDROM_MSF$) is done.
844 \begin{description}
845 \item[CDROMSUBCHNL] Get sub-channel data in argument $arg$ of type $struct\
846 cdrom_subchnl *{}$.
847 \item[CDROMREADTOCHDR] Read Table of Contents header, in $arg$ of type
848 $struct\ cdrom_tochdr *{}$. 
849 \item[CDROMREADTOCENTRY] Read a Table of Contents entry in $arg$ and
850 specified by $arg$ of type $struct\ cdrom_tocentry *{}$.
851 \item[CDROMPLAYMSF] Play audio fragment specified in Minute, Second,
852 Frame format, delimited by $arg$ of type $struct\ cdrom_msf *{}$.
853 \item[CDROMPLAYTRKIND] Play audio fragment in track-index format
854 delimited by $arg$ of type $struct\ \penalty-1000 cdrom_ti *{}$.
855 \item[CDROMVOLCTRL] Set volume specified by $arg$ of type $struct\
856 cdrom_volctrl *{}$.
857 \item[CDROMVOLREAD] Read volume into by $arg$ of type $struct\
858 cdrom_volctrl *{}$.
859 \item[CDROMSTART] Spin up disc.
860 \item[CDROMSTOP] Stop playback of audio fragment.
861 \item[CDROMPAUSE] Pause playback of audio fragment.
862 \item[CDROMRESUME] Resume playing.
863 \end{description}
864
865 \subsubsection{New $ioctl$s in \cdromc}
866
867 The following $ioctl$s have been introduced to allow user programs to
868 control the behavior of individual \cdrom\ devices. New $ioctl$
869 commands can be identified by the underscores in their names.
870 \begin{description}
871 \item[CDROM_SET_OPTIONS] Set options specified by $arg$. Returns the
872 option flag register after modification. Use  $arg = \rm0$ for reading
873 the current flags.
874 \item[CDROM_CLEAR_OPTIONS] Clear options specified by $arg$. Returns
875   the option flag register after modification.
876 \item[CDROM_SELECT_SPEED] Select head-rate speed of disc specified as
877   by $arg$ in units of standard cdrom speed (176\,kB/sec raw data or
878   150\,kB/sec file system data). The value 0 means `auto-select', \ie,
879   play audio discs at real time and data discs at maximum speed. The value
880   $arg$ is checked against the maximum head rate of the drive found in the
881   $cdrom_dops$.
882 \item[CDROM_SELECT_DISC] Select disc numbered $arg$ from a juke-box.
883   First disc is numbered 0. The number $arg$ is checked against the
884   maximum number of discs in the juke-box found in the $cdrom_dops$.
885 \item[CDROM_MEDIA_CHANGED] Returns 1 if a disc has been changed since
886   the last call. Note that calls to $cdrom_media_changed$ by the VFS
887   are treated by an independent queue, so both mechanisms will detect
888   a media change once. For juke-boxes, an extra argument $arg$
889   specifies the slot for which the information is given. The special
890   value $CDSL_CURRENT$ requests that information about the currently
891   selected slot be returned.
892 \item[CDROM_DRIVE_STATUS] Returns the status of the drive by a call to
893   $drive_status()$. Return values are defined in section~\ref{drive
894    status}. Note that this call doesn't return information on the
895   current playing activity of the drive; this can be polled through an
896   $ioctl$ call to $CDROMSUBCHNL$. For juke-boxes, an extra argument
897   $arg$ specifies the slot for which (possibly limited) information is
898   given. The special value $CDSL_CURRENT$ requests that information
899   about the currently selected slot be returned.
900 \item[CDROM_DISC_STATUS] Returns the type of the disc currently in the
901   drive.  It should be viewed as a complement to $CDROM_DRIVE_STATUS$.
902   This $ioctl$ can provide \emph {some} information about the current
903   disc that is inserted in the drive.  This functionality used to be
904   implemented in the low level drivers, but is now carried out
905   entirely in \UCD.
906   
907   The history of development of the CD's use as a carrier medium for
908   various digital information has lead to many different disc types.
909   This $ioctl$ is useful only in the case that CDs have \emph {only
910     one} type of data on them.  While this is often the case, it is
911   also very common for CDs to have some tracks with data, and some
912   tracks with audio.  Because this is an existing interface, rather
913   than fixing this interface by changing the assumptions it was made
914   under, thereby breaking all user applications that use this
915   function, the \UCD\ implements this $ioctl$ as follows: If the CD in
916   question has audio tracks on it, and it has absolutely no CD-I, XA,
917   or data tracks on it, it will be reported as $CDS_AUDIO$.  If it has
918   both audio and data tracks, it will return $CDS_MIXED$.  If there
919   are no audio tracks on the disc, and if the CD in question has any
920   CD-I tracks on it, it will be reported as $CDS_XA_2_2$.  Failing
921   that, if the CD in question has any XA tracks on it, it will be
922   reported as $CDS_XA_2_1$.  Finally, if the CD in question has any
923   data tracks on it, it will be reported as a data CD ($CDS_DATA_1$).
924
925   This $ioctl$ can return:
926   $$
927   \halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
928     CDS_NO_INFO& no information available\cr
929     CDS_NO_DISC& no disc is inserted, or tray is opened\cr
930     CDS_AUDIO& Audio disc (2352 audio bytes/frame)\cr
931     CDS_DATA_1& data disc, mode 1 (2048 user bytes/frame)\cr
932     CDS_XA_2_1& mixed data (XA), mode 2, form 1 (2048 user bytes)\cr
933     CDS_XA_2_2& mixed data (XA), mode 2, form 1 (2324  user bytes)\cr
934     CDS_MIXED& mixed audio/data disc\cr
935     }
936   $$
937   For some information concerning frame layout of the various disc
938   types, see a recent version of \cdromh.
939
940 \item[CDROM_CHANGER_NSLOTS] Returns the number of slots in a
941   juke-box. 
942 \item[CDROMRESET] Reset the drive. 
943 \item[CDROM_GET_CAPABILITY] Returns the $capability$ flags for the
944   drive. Refer to section \ref{capability} for more information on
945   these flags.
946 \item[CDROM_LOCKDOOR] Locks the door of the drive. $arg == \rm0$
947   unlocks the door, any other value locks it.
948 \item[CDROM_DEBUG] Turns on debugging info. Only root is allowed
949   to do this. Same semantics as CDROM_LOCKDOOR.
950 \end{description}
951
952 \subsubsection{Device dependent $ioctl$s}
953
954 Finally, all other $ioctl$s are passed to the function $dev_ioctl()$,
955 if implemented. No memory allocation or verification is carried out. 
956
957 \newsection{How to update your driver}
958
959 \begin{enumerate}
960 \item Make a backup of your current driver. 
961 \item Get hold of the files \cdromc\ and \cdromh, they should be in
962   the directory tree that came with this documentation.
963 \item Make sure you include \cdromh.
964 \item Change the 3rd argument of $register_blkdev$ from
965 $\&<your-drive>_fops$ to $\&cdrom_fops$. 
966 \item Just after that line, add the following to register with the \UCD:
967   $$register_cdrom(\&<your-drive>_info);$$
968   Similarly, add a call to $unregister_cdrom()$ at the appropriate place.
969 \item Copy an example of the device-operations $struct$ to your
970   source, \eg, from {\tt {cm206.c}} $cm206_dops$, and change all
971   entries to names corresponding to your driver, or names you just
972   happen to like. If your driver doesn't support a certain function,
973   make the entry $NULL$. At the entry $capability$ you should list all
974   capabilities your driver currently supports. If your driver
975   has a capability that is not listed, please send me a message.
976 \item Copy the $cdrom_device_info$ declaration from the same example
977   driver, and modify the entries according to your needs. If your
978   driver dynamically determines the capabilities of the hardware, this
979   structure should also be declared dynamically. 
980 \item Implement all functions in your $<device>_dops$ structure,
981   according to prototypes listed in \cdromh, and specifications given
982   in section~\ref{cdrom.c}. Most likely you have already implemented
983   the code in a large part, and you will almost certainly need to adapt the
984   prototype and return values.
985 \item Rename your $<device>_ioctl()$ function to $audio_ioctl$ and
986   change the prototype a little. Remove entries listed in the first
987   part in section~\ref{cdrom-ioctl}, if your code was OK, these are
988   just calls to the routines you adapted in the previous step.
989 \item You may remove all remaining memory checking code in the
990   $audio_ioctl()$ function that deals with audio commands (these are
991   listed in the second part of section~\ref{cdrom-ioctl}). There is no
992   need for memory allocation either, so most $case$s in the $switch$
993   statement look similar to:
994   $$
995   case\ CDROMREADTOCENTRY\colon get_toc_entry\bigl((struct\ 
996   cdrom_tocentry *{})\ arg\bigr);
997   $$
998 \item All remaining $ioctl$ cases must be moved to a separate
999   function, $<device>_ioctl$, the device-dependent $ioctl$s. Note that
1000   memory checking and allocation must be kept in this code!
1001 \item Change the prototypes of $<device>_open()$ and
1002   $<device>_release()$, and remove any strategic code (\ie, tray
1003   movement, door locking, etc.).
1004 \item Try to recompile the drivers. We advise you to use modules, both
1005   for {\tt {cdrom.o}} and your driver, as debugging is much easier this
1006   way.
1007 \end{enumerate} 
1008
1009 \newsection{Thanks}
1010
1011 Thanks to all the people involved.  First, Erik Andersen, who has
1012 taken over the torch in maintaining \cdromc\ and integrating much
1013 \cdrom-related code in the 2.1-kernel.  Thanks to Scott Snyder and
1014 Gerd Knorr, who were the first to implement this interface for SCSI
1015 and IDE-CD drivers and added many ideas for extension of the data
1016 structures relative to kernel~2.0.  Further thanks to Heiko Ei{\ss}feldt,
1017 Thomas Quinot, Jon Tombs, Ken Pizzini, Eberhard M\"onkeberg and Andrew
1018 Kroll, the \linux\ \cdrom\ device driver developers who were kind
1019 enough to give suggestions and criticisms during the writing. Finally
1020 of course, I want to thank Linus Torvalds for making this possible in
1021 the first place.
1022
1023 \vfill
1024 $ \version\ $
1025 \eject
1026 \end{document}